This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction form of dffn5f . (Contributed by Mario Carneiro, 8-Jan-2015) (Revised by Thierry Arnoux, 10-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | feqmptdf.1 | |- F/_ x A |
|
| feqmptdf.2 | |- F/_ x F |
||
| feqmptdf.3 | |- ( ph -> F : A --> B ) |
||
| Assertion | feqmptdf | |- ( ph -> F = ( x e. A |-> ( F ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feqmptdf.1 | |- F/_ x A |
|
| 2 | feqmptdf.2 | |- F/_ x F |
|
| 3 | feqmptdf.3 | |- ( ph -> F : A --> B ) |
|
| 4 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 5 | fnrel | |- ( F Fn A -> Rel F ) |
|
| 6 | nfcv | |- F/_ y F |
|
| 7 | 2 6 | dfrel4 | |- ( Rel F <-> F = { <. x , y >. | x F y } ) |
| 8 | 5 7 | sylib | |- ( F Fn A -> F = { <. x , y >. | x F y } ) |
| 9 | 2 1 | nffn | |- F/ x F Fn A |
| 10 | nfv | |- F/ y F Fn A |
|
| 11 | fnbr | |- ( ( F Fn A /\ x F y ) -> x e. A ) |
|
| 12 | 11 | ex | |- ( F Fn A -> ( x F y -> x e. A ) ) |
| 13 | 12 | pm4.71rd | |- ( F Fn A -> ( x F y <-> ( x e. A /\ x F y ) ) ) |
| 14 | eqcom | |- ( y = ( F ` x ) <-> ( F ` x ) = y ) |
|
| 15 | fnbrfvb | |- ( ( F Fn A /\ x e. A ) -> ( ( F ` x ) = y <-> x F y ) ) |
|
| 16 | 14 15 | bitrid | |- ( ( F Fn A /\ x e. A ) -> ( y = ( F ` x ) <-> x F y ) ) |
| 17 | 16 | pm5.32da | |- ( F Fn A -> ( ( x e. A /\ y = ( F ` x ) ) <-> ( x e. A /\ x F y ) ) ) |
| 18 | 13 17 | bitr4d | |- ( F Fn A -> ( x F y <-> ( x e. A /\ y = ( F ` x ) ) ) ) |
| 19 | 9 10 18 | opabbid | |- ( F Fn A -> { <. x , y >. | x F y } = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } ) |
| 20 | 8 19 | eqtrd | |- ( F Fn A -> F = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } ) |
| 21 | df-mpt | |- ( x e. A |-> ( F ` x ) ) = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } |
|
| 22 | 20 21 | eqtr4di | |- ( F Fn A -> F = ( x e. A |-> ( F ` x ) ) ) |
| 23 | 3 4 22 | 3syl | |- ( ph -> F = ( x e. A |-> ( F ` x ) ) ) |