This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Felapton", one of the syllogisms of Aristotelian logic. No ph is ps , all ph is ch , and some ph exist, therefore some ch is not ps . Instance of darapti . In Aristotelian notation, EAO-3: MeP and MaS therefore SoP. For example, "No flowers are animals" and "All flowers are plants", therefore "Some plants are not animals". (Contributed by David A. Wheeler, 28-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | felapton.maj | |- A. x ( ph -> -. ps ) |
|
| felapton.min | |- A. x ( ph -> ch ) |
||
| felapton.e | |- E. x ph |
||
| Assertion | felapton | |- E. x ( ch /\ -. ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | felapton.maj | |- A. x ( ph -> -. ps ) |
|
| 2 | felapton.min | |- A. x ( ph -> ch ) |
|
| 3 | felapton.e | |- E. x ph |
|
| 4 | 1 2 3 | darapti | |- E. x ( ch /\ -. ps ) |