This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Calemes", one of the syllogisms of Aristotelian logic. All ph is ps , and no ps is ch , therefore no ch is ph . In Aristotelian notation, AEE-4: PaM and MeS therefore SeP. (Contributed by David A. Wheeler, 28-Aug-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | calemes.maj | |- A. x ( ph -> ps ) |
|
| calemes.min | |- A. x ( ps -> -. ch ) |
||
| Assertion | calemes | |- A. x ( ch -> -. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | calemes.maj | |- A. x ( ph -> ps ) |
|
| 2 | calemes.min | |- A. x ( ps -> -. ch ) |
|
| 3 | con2 | |- ( ( ps -> -. ch ) -> ( ch -> -. ps ) ) |
|
| 4 | 3 | alimi | |- ( A. x ( ps -> -. ch ) -> A. x ( ch -> -. ps ) ) |
| 5 | 2 4 | ax-mp | |- A. x ( ch -> -. ps ) |
| 6 | 1 5 | camestres | |- A. x ( ch -> -. ph ) |