This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Darapti", one of the syllogisms of Aristotelian logic. All ph is ps , all ph is ch , and some ph exist, therefore some ch is ps . In Aristotelian notation, AAI-3: MaP and MaS therefore SiP. For example, "All squares are rectangles" and "All squares are rhombuses", therefore "Some rhombuses are rectangles". (Contributed by David A. Wheeler, 28-Aug-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | darapti.maj | |- A. x ( ph -> ps ) |
|
| darapti.min | |- A. x ( ph -> ch ) |
||
| darapti.e | |- E. x ph |
||
| Assertion | darapti | |- E. x ( ch /\ ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | darapti.maj | |- A. x ( ph -> ps ) |
|
| 2 | darapti.min | |- A. x ( ph -> ch ) |
|
| 3 | darapti.e | |- E. x ph |
|
| 4 | id | |- ( ( ( ph -> ch ) /\ ( ph -> ps ) ) -> ( ( ph -> ch ) /\ ( ph -> ps ) ) ) |
|
| 5 | 4 | alanimi | |- ( ( A. x ( ph -> ch ) /\ A. x ( ph -> ps ) ) -> A. x ( ( ph -> ch ) /\ ( ph -> ps ) ) ) |
| 6 | 2 1 5 | mp2an | |- A. x ( ( ph -> ch ) /\ ( ph -> ps ) ) |
| 7 | pm3.43 | |- ( ( ( ph -> ch ) /\ ( ph -> ps ) ) -> ( ph -> ( ch /\ ps ) ) ) |
|
| 8 | 7 | alimi | |- ( A. x ( ( ph -> ch ) /\ ( ph -> ps ) ) -> A. x ( ph -> ( ch /\ ps ) ) ) |
| 9 | 6 8 | ax-mp | |- A. x ( ph -> ( ch /\ ps ) ) |
| 10 | exim | |- ( A. x ( ph -> ( ch /\ ps ) ) -> ( E. x ph -> E. x ( ch /\ ps ) ) ) |
|
| 11 | 9 3 10 | mp2 | |- E. x ( ch /\ ps ) |