This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express that a function is constant. (Contributed by NM, 27-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fconst5 | |- ( ( F Fn A /\ A =/= (/) ) -> ( F = ( A X. { B } ) <-> ran F = { B } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneq | |- ( F = ( A X. { B } ) -> ran F = ran ( A X. { B } ) ) |
|
| 2 | rnxp | |- ( A =/= (/) -> ran ( A X. { B } ) = { B } ) |
|
| 3 | 2 | eqeq2d | |- ( A =/= (/) -> ( ran F = ran ( A X. { B } ) <-> ran F = { B } ) ) |
| 4 | 1 3 | imbitrid | |- ( A =/= (/) -> ( F = ( A X. { B } ) -> ran F = { B } ) ) |
| 5 | 4 | adantl | |- ( ( F Fn A /\ A =/= (/) ) -> ( F = ( A X. { B } ) -> ran F = { B } ) ) |
| 6 | df-fo | |- ( F : A -onto-> { B } <-> ( F Fn A /\ ran F = { B } ) ) |
|
| 7 | fof | |- ( F : A -onto-> { B } -> F : A --> { B } ) |
|
| 8 | 6 7 | sylbir | |- ( ( F Fn A /\ ran F = { B } ) -> F : A --> { B } ) |
| 9 | fconst2g | |- ( B e. _V -> ( F : A --> { B } <-> F = ( A X. { B } ) ) ) |
|
| 10 | 8 9 | imbitrid | |- ( B e. _V -> ( ( F Fn A /\ ran F = { B } ) -> F = ( A X. { B } ) ) ) |
| 11 | 10 | expd | |- ( B e. _V -> ( F Fn A -> ( ran F = { B } -> F = ( A X. { B } ) ) ) ) |
| 12 | 11 | adantrd | |- ( B e. _V -> ( ( F Fn A /\ A =/= (/) ) -> ( ran F = { B } -> F = ( A X. { B } ) ) ) ) |
| 13 | fnrel | |- ( F Fn A -> Rel F ) |
|
| 14 | snprc | |- ( -. B e. _V <-> { B } = (/) ) |
|
| 15 | relrn0 | |- ( Rel F -> ( F = (/) <-> ran F = (/) ) ) |
|
| 16 | 15 | biimprd | |- ( Rel F -> ( ran F = (/) -> F = (/) ) ) |
| 17 | 16 | adantl | |- ( ( { B } = (/) /\ Rel F ) -> ( ran F = (/) -> F = (/) ) ) |
| 18 | eqeq2 | |- ( { B } = (/) -> ( ran F = { B } <-> ran F = (/) ) ) |
|
| 19 | 18 | adantr | |- ( ( { B } = (/) /\ Rel F ) -> ( ran F = { B } <-> ran F = (/) ) ) |
| 20 | xpeq2 | |- ( { B } = (/) -> ( A X. { B } ) = ( A X. (/) ) ) |
|
| 21 | xp0 | |- ( A X. (/) ) = (/) |
|
| 22 | 20 21 | eqtrdi | |- ( { B } = (/) -> ( A X. { B } ) = (/) ) |
| 23 | 22 | eqeq2d | |- ( { B } = (/) -> ( F = ( A X. { B } ) <-> F = (/) ) ) |
| 24 | 23 | adantr | |- ( ( { B } = (/) /\ Rel F ) -> ( F = ( A X. { B } ) <-> F = (/) ) ) |
| 25 | 17 19 24 | 3imtr4d | |- ( ( { B } = (/) /\ Rel F ) -> ( ran F = { B } -> F = ( A X. { B } ) ) ) |
| 26 | 25 | ex | |- ( { B } = (/) -> ( Rel F -> ( ran F = { B } -> F = ( A X. { B } ) ) ) ) |
| 27 | 14 26 | sylbi | |- ( -. B e. _V -> ( Rel F -> ( ran F = { B } -> F = ( A X. { B } ) ) ) ) |
| 28 | 13 27 | syl5 | |- ( -. B e. _V -> ( F Fn A -> ( ran F = { B } -> F = ( A X. { B } ) ) ) ) |
| 29 | 28 | adantrd | |- ( -. B e. _V -> ( ( F Fn A /\ A =/= (/) ) -> ( ran F = { B } -> F = ( A X. { B } ) ) ) ) |
| 30 | 12 29 | pm2.61i | |- ( ( F Fn A /\ A =/= (/) ) -> ( ran F = { B } -> F = ( A X. { B } ) ) ) |
| 31 | 5 30 | impbid | |- ( ( F Fn A /\ A =/= (/) ) -> ( F = ( A X. { B } ) <-> ran F = { B } ) ) |