This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express that a function is constant. (Contributed by NM, 27-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fconst5 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ≠ ∅ ) → ( 𝐹 = ( 𝐴 × { 𝐵 } ) ↔ ran 𝐹 = { 𝐵 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneq | ⊢ ( 𝐹 = ( 𝐴 × { 𝐵 } ) → ran 𝐹 = ran ( 𝐴 × { 𝐵 } ) ) | |
| 2 | rnxp | ⊢ ( 𝐴 ≠ ∅ → ran ( 𝐴 × { 𝐵 } ) = { 𝐵 } ) | |
| 3 | 2 | eqeq2d | ⊢ ( 𝐴 ≠ ∅ → ( ran 𝐹 = ran ( 𝐴 × { 𝐵 } ) ↔ ran 𝐹 = { 𝐵 } ) ) |
| 4 | 1 3 | imbitrid | ⊢ ( 𝐴 ≠ ∅ → ( 𝐹 = ( 𝐴 × { 𝐵 } ) → ran 𝐹 = { 𝐵 } ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ≠ ∅ ) → ( 𝐹 = ( 𝐴 × { 𝐵 } ) → ran 𝐹 = { 𝐵 } ) ) |
| 6 | df-fo | ⊢ ( 𝐹 : 𝐴 –onto→ { 𝐵 } ↔ ( 𝐹 Fn 𝐴 ∧ ran 𝐹 = { 𝐵 } ) ) | |
| 7 | fof | ⊢ ( 𝐹 : 𝐴 –onto→ { 𝐵 } → 𝐹 : 𝐴 ⟶ { 𝐵 } ) | |
| 8 | 6 7 | sylbir | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ran 𝐹 = { 𝐵 } ) → 𝐹 : 𝐴 ⟶ { 𝐵 } ) |
| 9 | fconst2g | ⊢ ( 𝐵 ∈ V → ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ 𝐹 = ( 𝐴 × { 𝐵 } ) ) ) | |
| 10 | 8 9 | imbitrid | ⊢ ( 𝐵 ∈ V → ( ( 𝐹 Fn 𝐴 ∧ ran 𝐹 = { 𝐵 } ) → 𝐹 = ( 𝐴 × { 𝐵 } ) ) ) |
| 11 | 10 | expd | ⊢ ( 𝐵 ∈ V → ( 𝐹 Fn 𝐴 → ( ran 𝐹 = { 𝐵 } → 𝐹 = ( 𝐴 × { 𝐵 } ) ) ) ) |
| 12 | 11 | adantrd | ⊢ ( 𝐵 ∈ V → ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ≠ ∅ ) → ( ran 𝐹 = { 𝐵 } → 𝐹 = ( 𝐴 × { 𝐵 } ) ) ) ) |
| 13 | fnrel | ⊢ ( 𝐹 Fn 𝐴 → Rel 𝐹 ) | |
| 14 | snprc | ⊢ ( ¬ 𝐵 ∈ V ↔ { 𝐵 } = ∅ ) | |
| 15 | relrn0 | ⊢ ( Rel 𝐹 → ( 𝐹 = ∅ ↔ ran 𝐹 = ∅ ) ) | |
| 16 | 15 | biimprd | ⊢ ( Rel 𝐹 → ( ran 𝐹 = ∅ → 𝐹 = ∅ ) ) |
| 17 | 16 | adantl | ⊢ ( ( { 𝐵 } = ∅ ∧ Rel 𝐹 ) → ( ran 𝐹 = ∅ → 𝐹 = ∅ ) ) |
| 18 | eqeq2 | ⊢ ( { 𝐵 } = ∅ → ( ran 𝐹 = { 𝐵 } ↔ ran 𝐹 = ∅ ) ) | |
| 19 | 18 | adantr | ⊢ ( ( { 𝐵 } = ∅ ∧ Rel 𝐹 ) → ( ran 𝐹 = { 𝐵 } ↔ ran 𝐹 = ∅ ) ) |
| 20 | xpeq2 | ⊢ ( { 𝐵 } = ∅ → ( 𝐴 × { 𝐵 } ) = ( 𝐴 × ∅ ) ) | |
| 21 | xp0 | ⊢ ( 𝐴 × ∅ ) = ∅ | |
| 22 | 20 21 | eqtrdi | ⊢ ( { 𝐵 } = ∅ → ( 𝐴 × { 𝐵 } ) = ∅ ) |
| 23 | 22 | eqeq2d | ⊢ ( { 𝐵 } = ∅ → ( 𝐹 = ( 𝐴 × { 𝐵 } ) ↔ 𝐹 = ∅ ) ) |
| 24 | 23 | adantr | ⊢ ( ( { 𝐵 } = ∅ ∧ Rel 𝐹 ) → ( 𝐹 = ( 𝐴 × { 𝐵 } ) ↔ 𝐹 = ∅ ) ) |
| 25 | 17 19 24 | 3imtr4d | ⊢ ( ( { 𝐵 } = ∅ ∧ Rel 𝐹 ) → ( ran 𝐹 = { 𝐵 } → 𝐹 = ( 𝐴 × { 𝐵 } ) ) ) |
| 26 | 25 | ex | ⊢ ( { 𝐵 } = ∅ → ( Rel 𝐹 → ( ran 𝐹 = { 𝐵 } → 𝐹 = ( 𝐴 × { 𝐵 } ) ) ) ) |
| 27 | 14 26 | sylbi | ⊢ ( ¬ 𝐵 ∈ V → ( Rel 𝐹 → ( ran 𝐹 = { 𝐵 } → 𝐹 = ( 𝐴 × { 𝐵 } ) ) ) ) |
| 28 | 13 27 | syl5 | ⊢ ( ¬ 𝐵 ∈ V → ( 𝐹 Fn 𝐴 → ( ran 𝐹 = { 𝐵 } → 𝐹 = ( 𝐴 × { 𝐵 } ) ) ) ) |
| 29 | 28 | adantrd | ⊢ ( ¬ 𝐵 ∈ V → ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ≠ ∅ ) → ( ran 𝐹 = { 𝐵 } → 𝐹 = ( 𝐴 × { 𝐵 } ) ) ) ) |
| 30 | 12 29 | pm2.61i | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ≠ ∅ ) → ( ran 𝐹 = { 𝐵 } → 𝐹 = ( 𝐴 × { 𝐵 } ) ) ) |
| 31 | 5 30 | impbid | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ≠ ∅ ) → ( 𝐹 = ( 𝐴 × { 𝐵 } ) ↔ ran 𝐹 = { 𝐵 } ) ) |