This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that the composition of two functions is the identity function by applying both functions to each value of the domain of the first function. (Contributed by AV, 15-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2fvcoidd.f | |- ( ph -> F : A --> B ) |
|
| 2fvcoidd.g | |- ( ph -> G : B --> A ) |
||
| 2fvcoidd.i | |- ( ph -> A. a e. A ( G ` ( F ` a ) ) = a ) |
||
| Assertion | 2fvcoidd | |- ( ph -> ( G o. F ) = ( _I |` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fvcoidd.f | |- ( ph -> F : A --> B ) |
|
| 2 | 2fvcoidd.g | |- ( ph -> G : B --> A ) |
|
| 3 | 2fvcoidd.i | |- ( ph -> A. a e. A ( G ` ( F ` a ) ) = a ) |
|
| 4 | fcompt | |- ( ( G : B --> A /\ F : A --> B ) -> ( G o. F ) = ( x e. A |-> ( G ` ( F ` x ) ) ) ) |
|
| 5 | 2 1 4 | syl2anc | |- ( ph -> ( G o. F ) = ( x e. A |-> ( G ` ( F ` x ) ) ) ) |
| 6 | 2fveq3 | |- ( a = x -> ( G ` ( F ` a ) ) = ( G ` ( F ` x ) ) ) |
|
| 7 | id | |- ( a = x -> a = x ) |
|
| 8 | 6 7 | eqeq12d | |- ( a = x -> ( ( G ` ( F ` a ) ) = a <-> ( G ` ( F ` x ) ) = x ) ) |
| 9 | 8 | rspccv | |- ( A. a e. A ( G ` ( F ` a ) ) = a -> ( x e. A -> ( G ` ( F ` x ) ) = x ) ) |
| 10 | 3 9 | syl | |- ( ph -> ( x e. A -> ( G ` ( F ` x ) ) = x ) ) |
| 11 | 10 | imp | |- ( ( ph /\ x e. A ) -> ( G ` ( F ` x ) ) = x ) |
| 12 | 11 | mpteq2dva | |- ( ph -> ( x e. A |-> ( G ` ( F ` x ) ) ) = ( x e. A |-> x ) ) |
| 13 | mptresid | |- ( _I |` A ) = ( x e. A |-> x ) |
|
| 14 | 12 13 | eqtr4di | |- ( ph -> ( x e. A |-> ( G ` ( F ` x ) ) ) = ( _I |` A ) ) |
| 15 | 5 14 | eqtrd | |- ( ph -> ( G o. F ) = ( _I |` A ) ) |