This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for falling factorial closure laws. (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | risefallfaccllem.1 | |- S C_ CC |
|
| risefallfaccllem.2 | |- 1 e. S |
||
| risefallfaccllem.3 | |- ( ( x e. S /\ y e. S ) -> ( x x. y ) e. S ) |
||
| fallfaccllem.4 | |- ( ( A e. S /\ k e. NN0 ) -> ( A - k ) e. S ) |
||
| Assertion | fallfaccllem | |- ( ( A e. S /\ N e. NN0 ) -> ( A FallFac N ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | risefallfaccllem.1 | |- S C_ CC |
|
| 2 | risefallfaccllem.2 | |- 1 e. S |
|
| 3 | risefallfaccllem.3 | |- ( ( x e. S /\ y e. S ) -> ( x x. y ) e. S ) |
|
| 4 | fallfaccllem.4 | |- ( ( A e. S /\ k e. NN0 ) -> ( A - k ) e. S ) |
|
| 5 | 1 | sseli | |- ( A e. S -> A e. CC ) |
| 6 | fallfacval | |- ( ( A e. CC /\ N e. NN0 ) -> ( A FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) ) |
|
| 7 | 5 6 | sylan | |- ( ( A e. S /\ N e. NN0 ) -> ( A FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) ) |
| 8 | 1 | a1i | |- ( A e. S -> S C_ CC ) |
| 9 | 3 | adantl | |- ( ( A e. S /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
| 10 | fzfid | |- ( A e. S -> ( 0 ... ( N - 1 ) ) e. Fin ) |
|
| 11 | elfznn0 | |- ( k e. ( 0 ... ( N - 1 ) ) -> k e. NN0 ) |
|
| 12 | 11 4 | sylan2 | |- ( ( A e. S /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( A - k ) e. S ) |
| 13 | 2 | a1i | |- ( A e. S -> 1 e. S ) |
| 14 | 8 9 10 12 13 | fprodcllem | |- ( A e. S -> prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) e. S ) |
| 15 | 14 | adantr | |- ( ( A e. S /\ N e. NN0 ) -> prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) e. S ) |
| 16 | 7 15 | eqeltrd | |- ( ( A e. S /\ N e. NN0 ) -> ( A FallFac N ) e. S ) |