This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of fabexg as of 9-Jun-2025. (Contributed by Paul Chapman, 25-Feb-2008) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fabexg.1 | |- F = { x | ( x : A --> B /\ ph ) } |
|
| Assertion | fabexgOLD | |- ( ( A e. C /\ B e. D ) -> F e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fabexg.1 | |- F = { x | ( x : A --> B /\ ph ) } |
|
| 2 | xpexg | |- ( ( A e. C /\ B e. D ) -> ( A X. B ) e. _V ) |
|
| 3 | pwexg | |- ( ( A X. B ) e. _V -> ~P ( A X. B ) e. _V ) |
|
| 4 | fssxp | |- ( x : A --> B -> x C_ ( A X. B ) ) |
|
| 5 | velpw | |- ( x e. ~P ( A X. B ) <-> x C_ ( A X. B ) ) |
|
| 6 | 4 5 | sylibr | |- ( x : A --> B -> x e. ~P ( A X. B ) ) |
| 7 | 6 | anim1i | |- ( ( x : A --> B /\ ph ) -> ( x e. ~P ( A X. B ) /\ ph ) ) |
| 8 | 7 | ss2abi | |- { x | ( x : A --> B /\ ph ) } C_ { x | ( x e. ~P ( A X. B ) /\ ph ) } |
| 9 | 1 8 | eqsstri | |- F C_ { x | ( x e. ~P ( A X. B ) /\ ph ) } |
| 10 | ssab2 | |- { x | ( x e. ~P ( A X. B ) /\ ph ) } C_ ~P ( A X. B ) |
|
| 11 | 9 10 | sstri | |- F C_ ~P ( A X. B ) |
| 12 | ssexg | |- ( ( F C_ ~P ( A X. B ) /\ ~P ( A X. B ) e. _V ) -> F e. _V ) |
|
| 13 | 11 12 | mpan | |- ( ~P ( A X. B ) e. _V -> F e. _V ) |
| 14 | 2 3 13 | 3syl | |- ( ( A e. C /\ B e. D ) -> F e. _V ) |