This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of fabexg as of 9-Jun-2025. (Contributed by Paul Chapman, 25-Feb-2008) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fabexg.1 | ⊢ 𝐹 = { 𝑥 ∣ ( 𝑥 : 𝐴 ⟶ 𝐵 ∧ 𝜑 ) } | |
| Assertion | fabexgOLD | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝐹 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fabexg.1 | ⊢ 𝐹 = { 𝑥 ∣ ( 𝑥 : 𝐴 ⟶ 𝐵 ∧ 𝜑 ) } | |
| 2 | xpexg | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 × 𝐵 ) ∈ V ) | |
| 3 | pwexg | ⊢ ( ( 𝐴 × 𝐵 ) ∈ V → 𝒫 ( 𝐴 × 𝐵 ) ∈ V ) | |
| 4 | fssxp | ⊢ ( 𝑥 : 𝐴 ⟶ 𝐵 → 𝑥 ⊆ ( 𝐴 × 𝐵 ) ) | |
| 5 | velpw | ⊢ ( 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↔ 𝑥 ⊆ ( 𝐴 × 𝐵 ) ) | |
| 6 | 4 5 | sylibr | ⊢ ( 𝑥 : 𝐴 ⟶ 𝐵 → 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) |
| 7 | 6 | anim1i | ⊢ ( ( 𝑥 : 𝐴 ⟶ 𝐵 ∧ 𝜑 ) → ( 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝜑 ) ) |
| 8 | 7 | ss2abi | ⊢ { 𝑥 ∣ ( 𝑥 : 𝐴 ⟶ 𝐵 ∧ 𝜑 ) } ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝜑 ) } |
| 9 | 1 8 | eqsstri | ⊢ 𝐹 ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝜑 ) } |
| 10 | ssab2 | ⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝜑 ) } ⊆ 𝒫 ( 𝐴 × 𝐵 ) | |
| 11 | 9 10 | sstri | ⊢ 𝐹 ⊆ 𝒫 ( 𝐴 × 𝐵 ) |
| 12 | ssexg | ⊢ ( ( 𝐹 ⊆ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝒫 ( 𝐴 × 𝐵 ) ∈ V ) → 𝐹 ∈ V ) | |
| 13 | 11 12 | mpan | ⊢ ( 𝒫 ( 𝐴 × 𝐵 ) ∈ V → 𝐹 ∈ V ) |
| 14 | 2 3 13 | 3syl | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝐹 ∈ V ) |