This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for f1ocpbl . (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1ocpbl.f | |- ( ph -> F : V -1-1-onto-> X ) |
|
| Assertion | f1ocpbllem | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( ( F ` A ) = ( F ` C ) /\ ( F ` B ) = ( F ` D ) ) <-> ( A = C /\ B = D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocpbl.f | |- ( ph -> F : V -1-1-onto-> X ) |
|
| 2 | f1of1 | |- ( F : V -1-1-onto-> X -> F : V -1-1-> X ) |
|
| 3 | 1 2 | syl | |- ( ph -> F : V -1-1-> X ) |
| 4 | 3 | 3ad2ant1 | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> F : V -1-1-> X ) |
| 5 | simp2l | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> A e. V ) |
|
| 6 | simp3l | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> C e. V ) |
|
| 7 | f1fveq | |- ( ( F : V -1-1-> X /\ ( A e. V /\ C e. V ) ) -> ( ( F ` A ) = ( F ` C ) <-> A = C ) ) |
|
| 8 | 4 5 6 7 | syl12anc | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( F ` A ) = ( F ` C ) <-> A = C ) ) |
| 9 | simp2r | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> B e. V ) |
|
| 10 | simp3r | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> D e. V ) |
|
| 11 | f1fveq | |- ( ( F : V -1-1-> X /\ ( B e. V /\ D e. V ) ) -> ( ( F ` B ) = ( F ` D ) <-> B = D ) ) |
|
| 12 | 4 9 10 11 | syl12anc | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( F ` B ) = ( F ` D ) <-> B = D ) ) |
| 13 | 8 12 | anbi12d | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( ( F ` A ) = ( F ` C ) /\ ( F ` B ) = ( F ` D ) ) <-> ( A = C /\ B = D ) ) ) |