This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and codomain/range interchanged. (Contributed by NM, 8-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ocnvb | |- ( Rel F -> ( F : A -1-1-onto-> B <-> `' F : B -1-1-onto-> A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv | |- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
|
| 2 | f1ocnv | |- ( `' F : B -1-1-onto-> A -> `' `' F : A -1-1-onto-> B ) |
|
| 3 | dfrel2 | |- ( Rel F <-> `' `' F = F ) |
|
| 4 | f1oeq1 | |- ( `' `' F = F -> ( `' `' F : A -1-1-onto-> B <-> F : A -1-1-onto-> B ) ) |
|
| 5 | 3 4 | sylbi | |- ( Rel F -> ( `' `' F : A -1-1-onto-> B <-> F : A -1-1-onto-> B ) ) |
| 6 | 2 5 | imbitrid | |- ( Rel F -> ( `' F : B -1-1-onto-> A -> F : A -1-1-onto-> B ) ) |
| 7 | 1 6 | impbid2 | |- ( Rel F -> ( F : A -1-1-onto-> B <-> `' F : B -1-1-onto-> A ) ) |