This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton consisting in a nested ordered pair is a one-to-one function from the cartesian product of two singletons onto a singleton (case where the two singletons are equal). (Contributed by AV, 15-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1o2sn | |- ( ( E e. V /\ X e. W ) -> { <. <. E , E >. , X >. } : ( { E } X. { E } ) -1-1-onto-> { X } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex | |- <. E , E >. e. _V |
|
| 2 | simpr | |- ( ( E e. V /\ X e. W ) -> X e. W ) |
|
| 3 | f1osng | |- ( ( <. E , E >. e. _V /\ X e. W ) -> { <. <. E , E >. , X >. } : { <. E , E >. } -1-1-onto-> { X } ) |
|
| 4 | 1 2 3 | sylancr | |- ( ( E e. V /\ X e. W ) -> { <. <. E , E >. , X >. } : { <. E , E >. } -1-1-onto-> { X } ) |
| 5 | xpsng | |- ( ( E e. V /\ E e. V ) -> ( { E } X. { E } ) = { <. E , E >. } ) |
|
| 6 | 5 | anidms | |- ( E e. V -> ( { E } X. { E } ) = { <. E , E >. } ) |
| 7 | 6 | eqcomd | |- ( E e. V -> { <. E , E >. } = ( { E } X. { E } ) ) |
| 8 | 7 | adantr | |- ( ( E e. V /\ X e. W ) -> { <. E , E >. } = ( { E } X. { E } ) ) |
| 9 | 8 | f1oeq2d | |- ( ( E e. V /\ X e. W ) -> ( { <. <. E , E >. , X >. } : { <. E , E >. } -1-1-onto-> { X } <-> { <. <. E , E >. , X >. } : ( { E } X. { E } ) -1-1-onto-> { X } ) ) |
| 10 | 4 9 | mpbid | |- ( ( E e. V /\ X e. W ) -> { <. <. E , E >. , X >. } : ( { E } X. { E } ) -1-1-onto-> { X } ) |