This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: A one-to-one function with the domain { 0, 1 ,2 } in terms of function
values. (Contributed by Alexander van der Vekens, 26-Jan-2018)
|
|
Ref |
Expression |
|
Hypothesis |
f13idfv.a |
|
|
Assertion |
f13idfv |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f13idfv.a |
|
| 2 |
|
0z |
|
| 3 |
|
1z |
|
| 4 |
|
2z |
|
| 5 |
2 3 4
|
3pm3.2i |
|
| 6 |
|
0ne1 |
|
| 7 |
|
0ne2 |
|
| 8 |
|
1ne2 |
|
| 9 |
6 7 8
|
3pm3.2i |
|
| 10 |
|
fz0tp |
|
| 11 |
1 10
|
eqtri |
|
| 12 |
11
|
f13dfv |
|
| 13 |
5 9 12
|
mp2an |
|