This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f0rn0 | |- ( ( E : X --> Y /\ -. E. y e. Y y e. ran E ) -> X = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm | |- ( E : X --> Y -> dom E = X ) |
|
| 2 | frn | |- ( E : X --> Y -> ran E C_ Y ) |
|
| 3 | ralnex | |- ( A. y e. Y -. y e. ran E <-> -. E. y e. Y y e. ran E ) |
|
| 4 | disj | |- ( ( Y i^i ran E ) = (/) <-> A. y e. Y -. y e. ran E ) |
|
| 5 | dfss2 | |- ( ran E C_ Y <-> ( ran E i^i Y ) = ran E ) |
|
| 6 | incom | |- ( ran E i^i Y ) = ( Y i^i ran E ) |
|
| 7 | 6 | eqeq1i | |- ( ( ran E i^i Y ) = ran E <-> ( Y i^i ran E ) = ran E ) |
| 8 | eqtr2 | |- ( ( ( Y i^i ran E ) = ran E /\ ( Y i^i ran E ) = (/) ) -> ran E = (/) ) |
|
| 9 | 8 | ex | |- ( ( Y i^i ran E ) = ran E -> ( ( Y i^i ran E ) = (/) -> ran E = (/) ) ) |
| 10 | 7 9 | sylbi | |- ( ( ran E i^i Y ) = ran E -> ( ( Y i^i ran E ) = (/) -> ran E = (/) ) ) |
| 11 | 5 10 | sylbi | |- ( ran E C_ Y -> ( ( Y i^i ran E ) = (/) -> ran E = (/) ) ) |
| 12 | 4 11 | biimtrrid | |- ( ran E C_ Y -> ( A. y e. Y -. y e. ran E -> ran E = (/) ) ) |
| 13 | 3 12 | biimtrrid | |- ( ran E C_ Y -> ( -. E. y e. Y y e. ran E -> ran E = (/) ) ) |
| 14 | 2 13 | syl | |- ( E : X --> Y -> ( -. E. y e. Y y e. ran E -> ran E = (/) ) ) |
| 15 | 14 | imp | |- ( ( E : X --> Y /\ -. E. y e. Y y e. ran E ) -> ran E = (/) ) |
| 16 | 15 | adantl | |- ( ( dom E = X /\ ( E : X --> Y /\ -. E. y e. Y y e. ran E ) ) -> ran E = (/) ) |
| 17 | dm0rn0 | |- ( dom E = (/) <-> ran E = (/) ) |
|
| 18 | 16 17 | sylibr | |- ( ( dom E = X /\ ( E : X --> Y /\ -. E. y e. Y y e. ran E ) ) -> dom E = (/) ) |
| 19 | eqeq1 | |- ( X = dom E -> ( X = (/) <-> dom E = (/) ) ) |
|
| 20 | 19 | eqcoms | |- ( dom E = X -> ( X = (/) <-> dom E = (/) ) ) |
| 21 | 20 | adantr | |- ( ( dom E = X /\ ( E : X --> Y /\ -. E. y e. Y y e. ran E ) ) -> ( X = (/) <-> dom E = (/) ) ) |
| 22 | 18 21 | mpbird | |- ( ( dom E = X /\ ( E : X --> Y /\ -. E. y e. Y y e. ran E ) ) -> X = (/) ) |
| 23 | 22 | exp32 | |- ( dom E = X -> ( E : X --> Y -> ( -. E. y e. Y y e. ran E -> X = (/) ) ) ) |
| 24 | 1 23 | mpcom | |- ( E : X --> Y -> ( -. E. y e. Y y e. ran E -> X = (/) ) ) |
| 25 | 24 | imp | |- ( ( E : X --> Y /\ -. E. y e. Y y e. ran E ) -> X = (/) ) |