This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There exist two different sets. (Contributed by NM, 7-Nov-2006) Avoid ax-13 . (Revised by BJ, 31-May-2019) Avoid ax-8 . (Revised by SN, 21-Sep-2023) Avoid ax-12 . (Revised by Rohan Ridenour, 9-Oct-2024) Use ax-pr instead of ax-pow . (Revised by BTernaryTau, 3-Dec-2024) Extract this result from the proof of dtru . (Revised by BJ, 2-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exexneq | |- E. x E. y -. x = y |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exel | |- E. x E. z z e. x |
|
| 2 | ax-nul | |- E. y A. z -. z e. y |
|
| 3 | exdistrv | |- ( E. x E. y ( E. z z e. x /\ A. z -. z e. y ) <-> ( E. x E. z z e. x /\ E. y A. z -. z e. y ) ) |
|
| 4 | 1 2 3 | mpbir2an | |- E. x E. y ( E. z z e. x /\ A. z -. z e. y ) |
| 5 | ax9v1 | |- ( x = y -> ( z e. x -> z e. y ) ) |
|
| 6 | 5 | eximdv | |- ( x = y -> ( E. z z e. x -> E. z z e. y ) ) |
| 7 | df-ex | |- ( E. z z e. y <-> -. A. z -. z e. y ) |
|
| 8 | 6 7 | imbitrdi | |- ( x = y -> ( E. z z e. x -> -. A. z -. z e. y ) ) |
| 9 | 8 | com12 | |- ( E. z z e. x -> ( x = y -> -. A. z -. z e. y ) ) |
| 10 | 9 | con2d | |- ( E. z z e. x -> ( A. z -. z e. y -> -. x = y ) ) |
| 11 | 10 | imp | |- ( ( E. z z e. x /\ A. z -. z e. y ) -> -. x = y ) |
| 12 | 11 | 2eximi | |- ( E. x E. y ( E. z z e. x /\ A. z -. z e. y ) -> E. x E. y -. x = y ) |
| 13 | 4 12 | ax-mp | |- E. x E. y -. x = y |