This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There exist two different sets. (Contributed by NM, 7-Nov-2006) Avoid ax-13 . (Revised by BJ, 31-May-2019) Avoid ax-8 . (Revised by SN, 21-Sep-2023) Avoid ax-12 . (Revised by Rohan Ridenour, 9-Oct-2024) Use ax-pr instead of ax-pow . (Revised by BTernaryTau, 3-Dec-2024) Extract this result from the proof of dtru . (Revised by BJ, 2-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exexneq | ⊢ ∃ 𝑥 ∃ 𝑦 ¬ 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exel | ⊢ ∃ 𝑥 ∃ 𝑧 𝑧 ∈ 𝑥 | |
| 2 | ax-nul | ⊢ ∃ 𝑦 ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 | |
| 3 | exdistrv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ∃ 𝑧 𝑧 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) ↔ ( ∃ 𝑥 ∃ 𝑧 𝑧 ∈ 𝑥 ∧ ∃ 𝑦 ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) ) | |
| 4 | 1 2 3 | mpbir2an | ⊢ ∃ 𝑥 ∃ 𝑦 ( ∃ 𝑧 𝑧 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) |
| 5 | ax9v1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦 ) ) | |
| 6 | 5 | eximdv | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑧 𝑧 ∈ 𝑥 → ∃ 𝑧 𝑧 ∈ 𝑦 ) ) |
| 7 | df-ex | ⊢ ( ∃ 𝑧 𝑧 ∈ 𝑦 ↔ ¬ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) | |
| 8 | 6 7 | imbitrdi | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑧 𝑧 ∈ 𝑥 → ¬ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) ) |
| 9 | 8 | com12 | ⊢ ( ∃ 𝑧 𝑧 ∈ 𝑥 → ( 𝑥 = 𝑦 → ¬ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) ) |
| 10 | 9 | con2d | ⊢ ( ∃ 𝑧 𝑧 ∈ 𝑥 → ( ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 → ¬ 𝑥 = 𝑦 ) ) |
| 11 | 10 | imp | ⊢ ( ( ∃ 𝑧 𝑧 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) → ¬ 𝑥 = 𝑦 ) |
| 12 | 11 | 2eximi | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ∃ 𝑧 𝑧 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) → ∃ 𝑥 ∃ 𝑦 ¬ 𝑥 = 𝑦 ) |
| 13 | 4 12 | ax-mp | ⊢ ∃ 𝑥 ∃ 𝑦 ¬ 𝑥 = 𝑦 |