This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of Megill p. 448 (p. 16 of preprint). Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker drex1v if possible. (Contributed by NM, 27-Feb-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dral1.1 | |- ( A. x x = y -> ( ph <-> ps ) ) |
|
| Assertion | drex1 | |- ( A. x x = y -> ( E. x ph <-> E. y ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dral1.1 | |- ( A. x x = y -> ( ph <-> ps ) ) |
|
| 2 | 1 | notbid | |- ( A. x x = y -> ( -. ph <-> -. ps ) ) |
| 3 | 2 | dral1 | |- ( A. x x = y -> ( A. x -. ph <-> A. y -. ps ) ) |
| 4 | 3 | notbid | |- ( A. x x = y -> ( -. A. x -. ph <-> -. A. y -. ps ) ) |
| 5 | df-ex | |- ( E. x ph <-> -. A. x -. ph ) |
|
| 6 | df-ex | |- ( E. y ps <-> -. A. y -. ps ) |
|
| 7 | 4 5 6 | 3bitr4g | |- ( A. x x = y -> ( E. x ph <-> E. y ps ) ) |