This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There exists a preordered set for any base set. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exbasprs | |- ( B e. V -> E. k e. Proset B = ( Base ` k ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( k = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } -> ( Base ` k ) = ( Base ` { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } ) ) |
|
| 2 | 1 | eqeq2d | |- ( k = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } -> ( B = ( Base ` k ) <-> B = ( Base ` { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } ) ) ) |
| 3 | eqid | |- { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } |
|
| 4 | 3 | resipos | |- ( B e. V -> { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } e. Poset ) |
| 5 | posprs | |- ( { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } e. Poset -> { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } e. Proset ) |
|
| 6 | 4 5 | syl | |- ( B e. V -> { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } e. Proset ) |
| 7 | 3 | resiposbas | |- ( B e. V -> B = ( Base ` { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } ) ) |
| 8 | 2 6 7 | rspcedvdw | |- ( B e. V -> E. k e. Proset B = ( Base ` k ) ) |