This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Uniqueness and unique existence
Unique existence: the unique existential quantifier
euanv
Metamath Proof Explorer
Description: Introduction of a conjunct into unique existential quantifier.
(Contributed by NM , 23-Mar-1995) Reduce dependencies on axioms.
(Revised by Wolf Lammen , 14-Jan-2023)
Ref
Expression
Assertion
euanv
⊢ ∃! x φ ∧ ψ ↔ φ ∧ ∃! x ψ
Proof
Step
Hyp
Ref
Expression
1
euex
⊢ ∃! x φ ∧ ψ → ∃ x φ ∧ ψ
2
simpl
⊢ φ ∧ ψ → φ
3
2
exlimiv
⊢ ∃ x φ ∧ ψ → φ
4
1 3
syl
⊢ ∃! x φ ∧ ψ → φ
5
ibar
⊢ φ → ψ ↔ φ ∧ ψ
6
5
eubidv
⊢ φ → ∃! x ψ ↔ ∃! x φ ∧ ψ
7
6
biimprcd
⊢ ∃! x φ ∧ ψ → φ → ∃! x ψ
8
4 7
jcai
⊢ ∃! x φ ∧ ψ → φ ∧ ∃! x ψ
9
6
biimpa
⊢ φ ∧ ∃! x ψ → ∃! x φ ∧ ψ
10
8 9
impbii
⊢ ∃! x φ ∧ ψ ↔ φ ∧ ∃! x ψ