This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of Enderton p. 56. (Contributed by Mario Carneiro, 6-May-2013) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ersymb.1 | ||
| erref.2 | |||
| Assertion | erref |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersymb.1 | ||
| 2 | erref.2 | ||
| 3 | erdm | ||
| 4 | 1 3 | syl | |
| 5 | 2 4 | eleqtrrd | |
| 6 | eldmg | ||
| 7 | 2 6 | syl | |
| 8 | 5 7 | mpbid | |
| 9 | 1 | adantr | |
| 10 | simpr | ||
| 11 | 9 10 10 | ertr4d | |
| 12 | 8 11 | exlimddv |