This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member Partition-Equivalence Theorem. Together with mpet mpet2 , mostly in its conventional cpet and cpet2 form, this is what we used to think of as the partition equivalence theorem (but cf. pet2 with general R ). (Contributed by Peter Mazsa, 4-May-2018) (Revised by Peter Mazsa, 26-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mpet3 | |- ( ( ElDisj A /\ -. (/) e. A ) <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldisjn0elb | |- ( ( ElDisj A /\ -. (/) e. A ) <-> ( Disj ( `' _E |` A ) /\ ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A ) ) |
|
| 2 | eqvrelqseqdisj3 | |- ( ( EqvRel ,~ ( `' _E |` A ) /\ ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) -> Disj ( `' _E |` A ) ) |
|
| 3 | 2 | petlem | |- ( ( Disj ( `' _E |` A ) /\ ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A ) <-> ( EqvRel ,~ ( `' _E |` A ) /\ ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) ) |
| 4 | eqvreldmqs | |- ( ( EqvRel ,~ ( `' _E |` A ) /\ ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) |
|
| 5 | 1 3 4 | 3bitri | |- ( ( ElDisj A /\ -. (/) e. A ) <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) |