This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of eqeq1d , shorter but requiring ax-12 . (Contributed by NM, 27-Dec-1993) (Revised by Wolf Lammen, 19-Nov-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqeq1d.1 | |- ( ph -> A = B ) |
|
| Assertion | eqeq1dALT | |- ( ph -> ( A = C <-> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1d.1 | |- ( ph -> A = B ) |
|
| 2 | dfcleq | |- ( A = B <-> A. x ( x e. A <-> x e. B ) ) |
|
| 3 | 1 2 | sylib | |- ( ph -> A. x ( x e. A <-> x e. B ) ) |
| 4 | 3 | 19.21bi | |- ( ph -> ( x e. A <-> x e. B ) ) |
| 5 | 4 | bibi1d | |- ( ph -> ( ( x e. A <-> x e. C ) <-> ( x e. B <-> x e. C ) ) ) |
| 6 | 5 | albidv | |- ( ph -> ( A. x ( x e. A <-> x e. C ) <-> A. x ( x e. B <-> x e. C ) ) ) |
| 7 | dfcleq | |- ( A = C <-> A. x ( x e. A <-> x e. C ) ) |
|
| 8 | dfcleq | |- ( B = C <-> A. x ( x e. B <-> x e. C ) ) |
|
| 9 | 6 7 8 | 3bitr4g | |- ( ph -> ( A = C <-> B = C ) ) |