This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Trichotomy of equinumerosity and strict dominance. This theorem is equivalent to the Axiom of Choice. Theorem 8 of Suppes p. 242. (Contributed by NM, 4-Jan-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | entric | |- ( ( A e. V /\ B e. W ) -> ( A ~< B \/ A ~~ B \/ B ~< A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domtri | |- ( ( A e. V /\ B e. W ) -> ( A ~<_ B <-> -. B ~< A ) ) |
|
| 2 | 1 | biimprd | |- ( ( A e. V /\ B e. W ) -> ( -. B ~< A -> A ~<_ B ) ) |
| 3 | brdom2 | |- ( A ~<_ B <-> ( A ~< B \/ A ~~ B ) ) |
|
| 4 | 2 3 | imbitrdi | |- ( ( A e. V /\ B e. W ) -> ( -. B ~< A -> ( A ~< B \/ A ~~ B ) ) ) |
| 5 | 4 | con1d | |- ( ( A e. V /\ B e. W ) -> ( -. ( A ~< B \/ A ~~ B ) -> B ~< A ) ) |
| 6 | 5 | orrd | |- ( ( A e. V /\ B e. W ) -> ( ( A ~< B \/ A ~~ B ) \/ B ~< A ) ) |
| 7 | df-3or | |- ( ( A ~< B \/ A ~~ B \/ B ~< A ) <-> ( ( A ~< B \/ A ~~ B ) \/ B ~< A ) ) |
|
| 8 | 6 7 | sylibr | |- ( ( A e. V /\ B e. W ) -> ( A ~< B \/ A ~~ B \/ B ~< A ) ) |