This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a Cartesian product. (Contributed by NM, 5-Mar-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elxp3 | |- ( A e. ( B X. C ) <-> E. x E. y ( <. x , y >. = A /\ <. x , y >. e. ( B X. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp | |- ( A e. ( B X. C ) <-> E. x E. y ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) ) |
|
| 2 | eqcom | |- ( <. x , y >. = A <-> A = <. x , y >. ) |
|
| 3 | opelxp | |- ( <. x , y >. e. ( B X. C ) <-> ( x e. B /\ y e. C ) ) |
|
| 4 | 2 3 | anbi12i | |- ( ( <. x , y >. = A /\ <. x , y >. e. ( B X. C ) ) <-> ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) ) |
| 5 | 4 | 2exbii | |- ( E. x E. y ( <. x , y >. = A /\ <. x , y >. e. ( B X. C ) ) <-> E. x E. y ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) ) |
| 6 | 1 5 | bitr4i | |- ( A e. ( B X. C ) <-> E. x E. y ( <. x , y >. = A /\ <. x , y >. e. ( B X. C ) ) ) |