This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a Cartesian product. (Contributed by NM, 5-Mar-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elxp3 | ⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 〈 𝑥 , 𝑦 〉 = 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp | ⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) | |
| 2 | eqcom | ⊢ ( 〈 𝑥 , 𝑦 〉 = 𝐴 ↔ 𝐴 = 〈 𝑥 , 𝑦 〉 ) | |
| 3 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) | |
| 4 | 2 3 | anbi12i | ⊢ ( ( 〈 𝑥 , 𝑦 〉 = 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐶 ) ) ↔ ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 5 | 4 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝑥 , 𝑦 〉 = 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐶 ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 6 | 1 5 | bitr4i | ⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 〈 𝑥 , 𝑦 〉 = 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐶 ) ) ) |