This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first member of an ordered pair in a relation belongs to the domain of the relation (see op1stb ). (Contributed by NM, 28-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elreldm | ⊢ ( ( Rel 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ∩ ∩ 𝐵 ∈ dom 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel | ⊢ ( Rel 𝐴 ↔ 𝐴 ⊆ ( V × V ) ) | |
| 2 | ssel | ⊢ ( 𝐴 ⊆ ( V × V ) → ( 𝐵 ∈ 𝐴 → 𝐵 ∈ ( V × V ) ) ) | |
| 3 | 1 2 | sylbi | ⊢ ( Rel 𝐴 → ( 𝐵 ∈ 𝐴 → 𝐵 ∈ ( V × V ) ) ) |
| 4 | elvv | ⊢ ( 𝐵 ∈ ( V × V ) ↔ ∃ 𝑥 ∃ 𝑦 𝐵 = 〈 𝑥 , 𝑦 〉 ) | |
| 5 | 3 4 | imbitrdi | ⊢ ( Rel 𝐴 → ( 𝐵 ∈ 𝐴 → ∃ 𝑥 ∃ 𝑦 𝐵 = 〈 𝑥 , 𝑦 〉 ) ) |
| 6 | eleq1 | ⊢ ( 𝐵 = 〈 𝑥 , 𝑦 〉 → ( 𝐵 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) | |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | vex | ⊢ 𝑦 ∈ V | |
| 9 | 7 8 | opeldm | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴 ) |
| 10 | 6 9 | biimtrdi | ⊢ ( 𝐵 = 〈 𝑥 , 𝑦 〉 → ( 𝐵 ∈ 𝐴 → 𝑥 ∈ dom 𝐴 ) ) |
| 11 | inteq | ⊢ ( 𝐵 = 〈 𝑥 , 𝑦 〉 → ∩ 𝐵 = ∩ 〈 𝑥 , 𝑦 〉 ) | |
| 12 | 11 | inteqd | ⊢ ( 𝐵 = 〈 𝑥 , 𝑦 〉 → ∩ ∩ 𝐵 = ∩ ∩ 〈 𝑥 , 𝑦 〉 ) |
| 13 | 7 8 | op1stb | ⊢ ∩ ∩ 〈 𝑥 , 𝑦 〉 = 𝑥 |
| 14 | 12 13 | eqtrdi | ⊢ ( 𝐵 = 〈 𝑥 , 𝑦 〉 → ∩ ∩ 𝐵 = 𝑥 ) |
| 15 | 14 | eleq1d | ⊢ ( 𝐵 = 〈 𝑥 , 𝑦 〉 → ( ∩ ∩ 𝐵 ∈ dom 𝐴 ↔ 𝑥 ∈ dom 𝐴 ) ) |
| 16 | 10 15 | sylibrd | ⊢ ( 𝐵 = 〈 𝑥 , 𝑦 〉 → ( 𝐵 ∈ 𝐴 → ∩ ∩ 𝐵 ∈ dom 𝐴 ) ) |
| 17 | 16 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝐵 = 〈 𝑥 , 𝑦 〉 → ( 𝐵 ∈ 𝐴 → ∩ ∩ 𝐵 ∈ dom 𝐴 ) ) |
| 18 | 5 17 | syli | ⊢ ( Rel 𝐴 → ( 𝐵 ∈ 𝐴 → ∩ ∩ 𝐵 ∈ dom 𝐴 ) ) |
| 19 | 18 | imp | ⊢ ( ( Rel 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ∩ ∩ 𝐵 ∈ dom 𝐴 ) |