This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a projective subspace sum of two points. (Contributed by NM, 8-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| paddfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| paddfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| paddfval.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | elpadd2at2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | paddfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | paddfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | paddfval.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 5 | 1 2 3 4 | elpadd2at | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ) |
| 6 | 5 | 3adant3r3 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ) |
| 7 | simpr3 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → 𝑆 ∈ 𝐴 ) | |
| 8 | 7 | biantrurd | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ) |
| 9 | 6 8 | bitr4d | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |