This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood of the image set of an operation value. (Contributed by Thierry Arnoux, 13-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elovimad.1 | |- ( ph -> A e. C ) |
|
| elovimad.2 | |- ( ph -> B e. D ) |
||
| elovimad.3 | |- ( ph -> Fun F ) |
||
| elovimad.4 | |- ( ph -> ( C X. D ) C_ dom F ) |
||
| Assertion | elovimad | |- ( ph -> ( A F B ) e. ( F " ( C X. D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovimad.1 | |- ( ph -> A e. C ) |
|
| 2 | elovimad.2 | |- ( ph -> B e. D ) |
|
| 3 | elovimad.3 | |- ( ph -> Fun F ) |
|
| 4 | elovimad.4 | |- ( ph -> ( C X. D ) C_ dom F ) |
|
| 5 | df-ov | |- ( A F B ) = ( F ` <. A , B >. ) |
|
| 6 | 1 2 | opelxpd | |- ( ph -> <. A , B >. e. ( C X. D ) ) |
| 7 | 4 6 | sseldd | |- ( ph -> <. A , B >. e. dom F ) |
| 8 | funfvima | |- ( ( Fun F /\ <. A , B >. e. dom F ) -> ( <. A , B >. e. ( C X. D ) -> ( F ` <. A , B >. ) e. ( F " ( C X. D ) ) ) ) |
|
| 9 | 3 7 8 | syl2anc | |- ( ph -> ( <. A , B >. e. ( C X. D ) -> ( F ` <. A , B >. ) e. ( F " ( C X. D ) ) ) ) |
| 10 | 6 9 | mpd | |- ( ph -> ( F ` <. A , B >. ) e. ( F " ( C X. D ) ) ) |
| 11 | 5 10 | eqeltrid | |- ( ph -> ( A F B ) e. ( F " ( C X. D ) ) ) |