This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood of the image set of an operation value. (Contributed by Thierry Arnoux, 13-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elovimad.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
| elovimad.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | ||
| elovimad.3 | ⊢ ( 𝜑 → Fun 𝐹 ) | ||
| elovimad.4 | ⊢ ( 𝜑 → ( 𝐶 × 𝐷 ) ⊆ dom 𝐹 ) | ||
| Assertion | elovimad | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ∈ ( 𝐹 “ ( 𝐶 × 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovimad.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
| 2 | elovimad.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | |
| 3 | elovimad.3 | ⊢ ( 𝜑 → Fun 𝐹 ) | |
| 4 | elovimad.4 | ⊢ ( 𝜑 → ( 𝐶 × 𝐷 ) ⊆ dom 𝐹 ) | |
| 5 | df-ov | ⊢ ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 6 | 1 2 | opelxpd | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 × 𝐷 ) ) |
| 7 | 4 6 | sseldd | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) |
| 8 | funfvima | ⊢ ( ( Fun 𝐹 ∧ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) → ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 × 𝐷 ) → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ( 𝐹 “ ( 𝐶 × 𝐷 ) ) ) ) | |
| 9 | 3 7 8 | syl2anc | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 × 𝐷 ) → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ( 𝐹 “ ( 𝐶 × 𝐷 ) ) ) ) |
| 10 | 6 9 | mpd | ⊢ ( 𝜑 → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ( 𝐹 “ ( 𝐶 × 𝐷 ) ) ) |
| 11 | 5 10 | eqeltrid | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ∈ ( 𝐹 “ ( 𝐶 × 𝐷 ) ) ) |