This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of the elements of an ordered pair. Closed form of elop . (Contributed by BJ, 22-Jun-2019) (Avoid depending on this detail.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elopg | |- ( ( A e. V /\ B e. W ) -> ( C e. <. A , B >. <-> ( C = { A } \/ C = { A , B } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfopg | |- ( ( A e. V /\ B e. W ) -> <. A , B >. = { { A } , { A , B } } ) |
|
| 2 | eleq2 | |- ( <. A , B >. = { { A } , { A , B } } -> ( C e. <. A , B >. <-> C e. { { A } , { A , B } } ) ) |
|
| 3 | snex | |- { A } e. _V |
|
| 4 | prex | |- { A , B } e. _V |
|
| 5 | 3 4 | elpr2 | |- ( C e. { { A } , { A , B } } <-> ( C = { A } \/ C = { A , B } ) ) |
| 6 | 2 5 | bitrdi | |- ( <. A , B >. = { { A } , { A , B } } -> ( C e. <. A , B >. <-> ( C = { A } \/ C = { A , B } ) ) ) |
| 7 | 1 6 | syl | |- ( ( A e. V /\ B e. W ) -> ( C e. <. A , B >. <-> ( C = { A } \/ C = { A , B } ) ) ) |