This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Derive the Axiom of Pairing
elopg
Metamath Proof Explorer
Description: Characterization of the elements of an ordered pair. Closed form of
elop . (Contributed by BJ , 22-Jun-2019) (Avoid depending on this
detail.)
Ref
Expression
Assertion
elopg
⊢ A ∈ V ∧ B ∈ W → C ∈ A B ↔ C = A ∨ C = A B
Proof
Step
Hyp
Ref
Expression
1
dfopg
⊢ A ∈ V ∧ B ∈ W → A B = A A B
2
eleq2
⊢ A B = A A B → C ∈ A B ↔ C ∈ A A B
3
snex
⊢ A ∈ V
4
prex
⊢ A B ∈ V
5
3 4
elpr2
⊢ C ∈ A A B ↔ C = A ∨ C = A B
6
2 5
bitrdi
⊢ A B = A A B → C ∈ A B ↔ C = A ∨ C = A B
7
1 6
syl
⊢ A ∈ V ∧ B ∈ W → C ∈ A B ↔ C = A ∨ C = A B