This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the image of a mapping. (Contributed by Thierry Arnoux, 3-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elimampt.f | |- F = ( x e. A |-> B ) |
|
| elimampt.c | |- ( ph -> C e. W ) |
||
| elimampt.d | |- ( ph -> D C_ A ) |
||
| Assertion | elimampt | |- ( ph -> ( C e. ( F " D ) <-> E. x e. D C = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimampt.f | |- F = ( x e. A |-> B ) |
|
| 2 | elimampt.c | |- ( ph -> C e. W ) |
|
| 3 | elimampt.d | |- ( ph -> D C_ A ) |
|
| 4 | df-ima | |- ( F " D ) = ran ( F |` D ) |
|
| 5 | 4 | eleq2i | |- ( C e. ( F " D ) <-> C e. ran ( F |` D ) ) |
| 6 | 1 | reseq1i | |- ( F |` D ) = ( ( x e. A |-> B ) |` D ) |
| 7 | resmpt | |- ( D C_ A -> ( ( x e. A |-> B ) |` D ) = ( x e. D |-> B ) ) |
|
| 8 | 6 7 | eqtrid | |- ( D C_ A -> ( F |` D ) = ( x e. D |-> B ) ) |
| 9 | 8 | rneqd | |- ( D C_ A -> ran ( F |` D ) = ran ( x e. D |-> B ) ) |
| 10 | 9 | eleq2d | |- ( D C_ A -> ( C e. ran ( F |` D ) <-> C e. ran ( x e. D |-> B ) ) ) |
| 11 | 3 10 | syl | |- ( ph -> ( C e. ran ( F |` D ) <-> C e. ran ( x e. D |-> B ) ) ) |
| 12 | eqid | |- ( x e. D |-> B ) = ( x e. D |-> B ) |
|
| 13 | 12 | elrnmpt | |- ( C e. W -> ( C e. ran ( x e. D |-> B ) <-> E. x e. D C = B ) ) |
| 14 | 2 13 | syl | |- ( ph -> ( C e. ran ( x e. D |-> B ) <-> E. x e. D C = B ) ) |
| 15 | 11 14 | bitrd | |- ( ph -> ( C e. ran ( F |` D ) <-> E. x e. D C = B ) ) |
| 16 | 5 15 | bitrid | |- ( ph -> ( C e. ( F " D ) <-> E. x e. D C = B ) ) |