This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of the elements of the intersection of the identity relation with a Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elidinxp | |- ( C e. ( _I i^i ( A X. B ) ) <-> E. x e. ( A i^i B ) C = <. x , x >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | risset | |- ( x e. B <-> E. y e. B y = x ) |
|
| 2 | 1 | anbi2ci | |- ( ( x e. B /\ C = <. x , x >. ) <-> ( C = <. x , x >. /\ E. y e. B y = x ) ) |
| 3 | r19.42v | |- ( E. y e. B ( C = <. x , x >. /\ y = x ) <-> ( C = <. x , x >. /\ E. y e. B y = x ) ) |
|
| 4 | opeq2 | |- ( x = y -> <. x , x >. = <. x , y >. ) |
|
| 5 | 4 | equcoms | |- ( y = x -> <. x , x >. = <. x , y >. ) |
| 6 | 5 | eqeq2d | |- ( y = x -> ( C = <. x , x >. <-> C = <. x , y >. ) ) |
| 7 | 6 | pm5.32ri | |- ( ( C = <. x , x >. /\ y = x ) <-> ( C = <. x , y >. /\ y = x ) ) |
| 8 | vex | |- y e. _V |
|
| 9 | 8 | ideq | |- ( x _I y <-> x = y ) |
| 10 | df-br | |- ( x _I y <-> <. x , y >. e. _I ) |
|
| 11 | equcom | |- ( x = y <-> y = x ) |
|
| 12 | 9 10 11 | 3bitr3i | |- ( <. x , y >. e. _I <-> y = x ) |
| 13 | 12 | anbi2i | |- ( ( C = <. x , y >. /\ <. x , y >. e. _I ) <-> ( C = <. x , y >. /\ y = x ) ) |
| 14 | 7 13 | bitr4i | |- ( ( C = <. x , x >. /\ y = x ) <-> ( C = <. x , y >. /\ <. x , y >. e. _I ) ) |
| 15 | 14 | rexbii | |- ( E. y e. B ( C = <. x , x >. /\ y = x ) <-> E. y e. B ( C = <. x , y >. /\ <. x , y >. e. _I ) ) |
| 16 | 2 3 15 | 3bitr2i | |- ( ( x e. B /\ C = <. x , x >. ) <-> E. y e. B ( C = <. x , y >. /\ <. x , y >. e. _I ) ) |
| 17 | 16 | rexbii | |- ( E. x e. A ( x e. B /\ C = <. x , x >. ) <-> E. x e. A E. y e. B ( C = <. x , y >. /\ <. x , y >. e. _I ) ) |
| 18 | rexin | |- ( E. x e. ( A i^i B ) C = <. x , x >. <-> E. x e. A ( x e. B /\ C = <. x , x >. ) ) |
|
| 19 | elinxp | |- ( C e. ( _I i^i ( A X. B ) ) <-> E. x e. A E. y e. B ( C = <. x , y >. /\ <. x , y >. e. _I ) ) |
|
| 20 | 17 18 19 | 3bitr4ri | |- ( C e. ( _I i^i ( A X. B ) ) <-> E. x e. ( A i^i B ) C = <. x , x >. ) |