This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of a finite set of sequential integers up to the length of a word is an element of an extended finite set of sequential integers up to the length of a concatenation of this word with another word. (Contributed by Alexander van der Vekens, 28-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzelfzccat | |- ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( 0 ... ( # ` A ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | |- ( A e. Word V -> ( # ` A ) e. NN0 ) |
|
| 2 | lencl | |- ( B e. Word V -> ( # ` B ) e. NN0 ) |
|
| 3 | elfz0add | |- ( ( ( # ` A ) e. NN0 /\ ( # ` B ) e. NN0 ) -> ( N e. ( 0 ... ( # ` A ) ) -> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( 0 ... ( # ` A ) ) -> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) |
| 5 | ccatlen | |- ( ( A e. Word V /\ B e. Word V ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
|
| 6 | 5 | oveq2d | |- ( ( A e. Word V /\ B e. Word V ) -> ( 0 ... ( # ` ( A ++ B ) ) ) = ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) |
| 7 | 6 | eleq2d | |- ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( 0 ... ( # ` ( A ++ B ) ) ) <-> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) |
| 8 | 4 7 | sylibrd | |- ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( 0 ... ( # ` A ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) ) |