This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of a finite set of sequential nonnegative integers is an element of an extended finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 28-Mar-2018) (Proof shortened by OpenAI, 25-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfz0add | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( N e. ( 0 ... A ) -> N e. ( 0 ... ( A + B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z | |- ( A e. NN0 -> A e. ZZ ) |
|
| 2 | uzid | |- ( A e. ZZ -> A e. ( ZZ>= ` A ) ) |
|
| 3 | 1 2 | syl | |- ( A e. NN0 -> A e. ( ZZ>= ` A ) ) |
| 4 | uzaddcl | |- ( ( A e. ( ZZ>= ` A ) /\ B e. NN0 ) -> ( A + B ) e. ( ZZ>= ` A ) ) |
|
| 5 | 3 4 | sylan | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( A + B ) e. ( ZZ>= ` A ) ) |
| 6 | fzss2 | |- ( ( A + B ) e. ( ZZ>= ` A ) -> ( 0 ... A ) C_ ( 0 ... ( A + B ) ) ) |
|
| 7 | 5 6 | syl | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( 0 ... A ) C_ ( 0 ... ( A + B ) ) ) |
| 8 | 7 | sseld | |- ( ( A e. NN0 /\ B e. NN0 ) -> ( N e. ( 0 ... A ) -> N e. ( 0 ... ( A + B ) ) ) ) |