This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | el2xptp | |- ( A e. ( ( B X. C ) X. D ) <-> E. x e. B E. y e. C E. z e. D A = <. x , y , z >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp2 | |- ( A e. ( ( B X. C ) X. D ) <-> E. p e. ( B X. C ) E. z e. D A = <. p , z >. ) |
|
| 2 | opeq1 | |- ( p = <. x , y >. -> <. p , z >. = <. <. x , y >. , z >. ) |
|
| 3 | 2 | eqeq2d | |- ( p = <. x , y >. -> ( A = <. p , z >. <-> A = <. <. x , y >. , z >. ) ) |
| 4 | 3 | rexbidv | |- ( p = <. x , y >. -> ( E. z e. D A = <. p , z >. <-> E. z e. D A = <. <. x , y >. , z >. ) ) |
| 5 | 4 | rexxp | |- ( E. p e. ( B X. C ) E. z e. D A = <. p , z >. <-> E. x e. B E. y e. C E. z e. D A = <. <. x , y >. , z >. ) |
| 6 | df-ot | |- <. x , y , z >. = <. <. x , y >. , z >. |
|
| 7 | 6 | eqcomi | |- <. <. x , y >. , z >. = <. x , y , z >. |
| 8 | 7 | eqeq2i | |- ( A = <. <. x , y >. , z >. <-> A = <. x , y , z >. ) |
| 9 | 8 | rexbii | |- ( E. z e. D A = <. <. x , y >. , z >. <-> E. z e. D A = <. x , y , z >. ) |
| 10 | 9 | rexbii | |- ( E. y e. C E. z e. D A = <. <. x , y >. , z >. <-> E. y e. C E. z e. D A = <. x , y , z >. ) |
| 11 | 10 | rexbii | |- ( E. x e. B E. y e. C E. z e. D A = <. <. x , y >. , z >. <-> E. x e. B E. y e. C E. z e. D A = <. x , y , z >. ) |
| 12 | 1 5 11 | 3bitri | |- ( A e. ( ( B X. C ) X. D ) <-> E. x e. B E. y e. C E. z e. D A = <. x , y , z >. ) |