This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of elrel for triple Cartesian products. (Contributed by Scott Fenton, 1-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | el2xpss | |- ( ( A e. R /\ R C_ ( ( B X. C ) X. D ) ) -> E. x E. y E. z A = <. x , y , z >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel2 | |- ( ( R C_ ( ( B X. C ) X. D ) /\ A e. R ) -> A e. ( ( B X. C ) X. D ) ) |
|
| 2 | 1 | ancoms | |- ( ( A e. R /\ R C_ ( ( B X. C ) X. D ) ) -> A e. ( ( B X. C ) X. D ) ) |
| 3 | el2xptp | |- ( A e. ( ( B X. C ) X. D ) <-> E. x e. B E. y e. C E. z e. D A = <. x , y , z >. ) |
|
| 4 | rexex | |- ( E. z e. D A = <. x , y , z >. -> E. z A = <. x , y , z >. ) |
|
| 5 | 4 | reximi | |- ( E. y e. C E. z e. D A = <. x , y , z >. -> E. y e. C E. z A = <. x , y , z >. ) |
| 6 | rexex | |- ( E. y e. C E. z A = <. x , y , z >. -> E. y E. z A = <. x , y , z >. ) |
|
| 7 | 5 6 | syl | |- ( E. y e. C E. z e. D A = <. x , y , z >. -> E. y E. z A = <. x , y , z >. ) |
| 8 | 7 | reximi | |- ( E. x e. B E. y e. C E. z e. D A = <. x , y , z >. -> E. x e. B E. y E. z A = <. x , y , z >. ) |
| 9 | rexex | |- ( E. x e. B E. y E. z A = <. x , y , z >. -> E. x E. y E. z A = <. x , y , z >. ) |
|
| 10 | 8 9 | syl | |- ( E. x e. B E. y e. C E. z e. D A = <. x , y , z >. -> E. x E. y E. z A = <. x , y , z >. ) |
| 11 | 3 10 | sylbi | |- ( A e. ( ( B X. C ) X. D ) -> E. x E. y E. z A = <. x , y , z >. ) |
| 12 | 2 11 | syl | |- ( ( A e. R /\ R C_ ( ( B X. C ) X. D ) ) -> E. x E. y E. z A = <. x , y , z >. ) |