This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of elrel for triple Cartesian products. (Contributed by Scott Fenton, 1-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | el2xpss | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝑅 ⊆ ( ( 𝐵 × 𝐶 ) × 𝐷 ) ) → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝐴 = 〈 𝑥 , 𝑦 , 𝑧 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel2 | ⊢ ( ( 𝑅 ⊆ ( ( 𝐵 × 𝐶 ) × 𝐷 ) ∧ 𝐴 ∈ 𝑅 ) → 𝐴 ∈ ( ( 𝐵 × 𝐶 ) × 𝐷 ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝑅 ⊆ ( ( 𝐵 × 𝐶 ) × 𝐷 ) ) → 𝐴 ∈ ( ( 𝐵 × 𝐶 ) × 𝐷 ) ) |
| 3 | el2xptp | ⊢ ( 𝐴 ∈ ( ( 𝐵 × 𝐶 ) × 𝐷 ) ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ∃ 𝑧 ∈ 𝐷 𝐴 = 〈 𝑥 , 𝑦 , 𝑧 〉 ) | |
| 4 | rexex | ⊢ ( ∃ 𝑧 ∈ 𝐷 𝐴 = 〈 𝑥 , 𝑦 , 𝑧 〉 → ∃ 𝑧 𝐴 = 〈 𝑥 , 𝑦 , 𝑧 〉 ) | |
| 5 | 4 | reximi | ⊢ ( ∃ 𝑦 ∈ 𝐶 ∃ 𝑧 ∈ 𝐷 𝐴 = 〈 𝑥 , 𝑦 , 𝑧 〉 → ∃ 𝑦 ∈ 𝐶 ∃ 𝑧 𝐴 = 〈 𝑥 , 𝑦 , 𝑧 〉 ) |
| 6 | rexex | ⊢ ( ∃ 𝑦 ∈ 𝐶 ∃ 𝑧 𝐴 = 〈 𝑥 , 𝑦 , 𝑧 〉 → ∃ 𝑦 ∃ 𝑧 𝐴 = 〈 𝑥 , 𝑦 , 𝑧 〉 ) | |
| 7 | 5 6 | syl | ⊢ ( ∃ 𝑦 ∈ 𝐶 ∃ 𝑧 ∈ 𝐷 𝐴 = 〈 𝑥 , 𝑦 , 𝑧 〉 → ∃ 𝑦 ∃ 𝑧 𝐴 = 〈 𝑥 , 𝑦 , 𝑧 〉 ) |
| 8 | 7 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ∃ 𝑧 ∈ 𝐷 𝐴 = 〈 𝑥 , 𝑦 , 𝑧 〉 → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∃ 𝑧 𝐴 = 〈 𝑥 , 𝑦 , 𝑧 〉 ) |
| 9 | rexex | ⊢ ( ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∃ 𝑧 𝐴 = 〈 𝑥 , 𝑦 , 𝑧 〉 → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝐴 = 〈 𝑥 , 𝑦 , 𝑧 〉 ) | |
| 10 | 8 9 | syl | ⊢ ( ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ∃ 𝑧 ∈ 𝐷 𝐴 = 〈 𝑥 , 𝑦 , 𝑧 〉 → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝐴 = 〈 𝑥 , 𝑦 , 𝑧 〉 ) |
| 11 | 3 10 | sylbi | ⊢ ( 𝐴 ∈ ( ( 𝐵 × 𝐶 ) × 𝐷 ) → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝐴 = 〈 𝑥 , 𝑦 , 𝑧 〉 ) |
| 12 | 2 11 | syl | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝑅 ⊆ ( ( 𝐵 × 𝐶 ) × 𝐷 ) ) → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝐴 = 〈 𝑥 , 𝑦 , 𝑧 〉 ) |