This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to transfer a commutative law via an equivalence relation. (Contributed by NM, 29-Aug-1995) (Revised by David Abernethy, 4-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecovcom.1 | ||
| ecovcom.2 | |||
| ecovcom.3 | |||
| ecovcom.4 | |||
| ecovcom.5 | |||
| Assertion | ecovcom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecovcom.1 | ||
| 2 | ecovcom.2 | ||
| 3 | ecovcom.3 | ||
| 4 | ecovcom.4 | ||
| 5 | ecovcom.5 | ||
| 6 | oveq1 | ||
| 7 | oveq2 | ||
| 8 | 6 7 | eqeq12d | |
| 9 | oveq2 | ||
| 10 | oveq1 | ||
| 11 | 9 10 | eqeq12d | |
| 12 | opeq12 | ||
| 13 | 12 | eceq1d | |
| 14 | 4 5 13 | mp2an | |
| 15 | 3 | ancoms | |
| 16 | 14 2 15 | 3eqtr4a | |
| 17 | 1 8 11 16 | 2ecoptocl |