This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variable is effectively not free in an equality if it is not either of the involved variables. F/ version of ax-c9 . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 6-Oct-2016) Remove dependency on ax-11 . (Revised by Wolf Lammen, 6-Sep-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nfeqf | |- ( ( -. A. z z = x /\ -. A. z z = y ) -> F/ z x = y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfna1 | |- F/ z -. A. z z = x |
|
| 2 | nfna1 | |- F/ z -. A. z z = y |
|
| 3 | 1 2 | nfan | |- F/ z ( -. A. z z = x /\ -. A. z z = y ) |
| 4 | equvinva | |- ( x = y -> E. w ( x = w /\ y = w ) ) |
|
| 5 | dveeq1 | |- ( -. A. z z = x -> ( x = w -> A. z x = w ) ) |
|
| 6 | 5 | imp | |- ( ( -. A. z z = x /\ x = w ) -> A. z x = w ) |
| 7 | dveeq1 | |- ( -. A. z z = y -> ( y = w -> A. z y = w ) ) |
|
| 8 | 7 | imp | |- ( ( -. A. z z = y /\ y = w ) -> A. z y = w ) |
| 9 | equtr2 | |- ( ( x = w /\ y = w ) -> x = y ) |
|
| 10 | 9 | alanimi | |- ( ( A. z x = w /\ A. z y = w ) -> A. z x = y ) |
| 11 | 6 8 10 | syl2an | |- ( ( ( -. A. z z = x /\ x = w ) /\ ( -. A. z z = y /\ y = w ) ) -> A. z x = y ) |
| 12 | 11 | an4s | |- ( ( ( -. A. z z = x /\ -. A. z z = y ) /\ ( x = w /\ y = w ) ) -> A. z x = y ) |
| 13 | 12 | ex | |- ( ( -. A. z z = x /\ -. A. z z = y ) -> ( ( x = w /\ y = w ) -> A. z x = y ) ) |
| 14 | 13 | exlimdv | |- ( ( -. A. z z = x /\ -. A. z z = y ) -> ( E. w ( x = w /\ y = w ) -> A. z x = y ) ) |
| 15 | 4 14 | syl5 | |- ( ( -. A. z z = x /\ -. A. z z = y ) -> ( x = y -> A. z x = y ) ) |
| 16 | 3 15 | nf5d | |- ( ( -. A. z z = x /\ -. A. z z = y ) -> F/ z x = y ) |