This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any number K whose mod base N is divisible by a divisor P of the base is also divisible by P . This means that primes will also be relatively prime to the base when reduced mod N for any base. (Contributed by Mario Carneiro, 13-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsmod | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> ( P || ( K mod N ) <-> P || K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> K e. ZZ ) |
|
| 2 | 1 | zred | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> K e. RR ) |
| 3 | simpl2 | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> N e. NN ) |
|
| 4 | 3 | nnrpd | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> N e. RR+ ) |
| 5 | modval | |- ( ( K e. RR /\ N e. RR+ ) -> ( K mod N ) = ( K - ( N x. ( |_ ` ( K / N ) ) ) ) ) |
|
| 6 | 2 4 5 | syl2anc | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> ( K mod N ) = ( K - ( N x. ( |_ ` ( K / N ) ) ) ) ) |
| 7 | 6 | breq2d | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> ( P || ( K mod N ) <-> P || ( K - ( N x. ( |_ ` ( K / N ) ) ) ) ) ) |
| 8 | simpl1 | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> P e. NN ) |
|
| 9 | 8 | nnzd | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> P e. ZZ ) |
| 10 | 3 | nnzd | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> N e. ZZ ) |
| 11 | 2 3 | nndivred | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> ( K / N ) e. RR ) |
| 12 | 11 | flcld | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> ( |_ ` ( K / N ) ) e. ZZ ) |
| 13 | simpr | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> P || N ) |
|
| 14 | 9 10 12 13 | dvdsmultr1d | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> P || ( N x. ( |_ ` ( K / N ) ) ) ) |
| 15 | 10 12 | zmulcld | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> ( N x. ( |_ ` ( K / N ) ) ) e. ZZ ) |
| 16 | 15 | zcnd | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> ( N x. ( |_ ` ( K / N ) ) ) e. CC ) |
| 17 | 16 | subid1d | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> ( ( N x. ( |_ ` ( K / N ) ) ) - 0 ) = ( N x. ( |_ ` ( K / N ) ) ) ) |
| 18 | 14 17 | breqtrrd | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> P || ( ( N x. ( |_ ` ( K / N ) ) ) - 0 ) ) |
| 19 | 0zd | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> 0 e. ZZ ) |
|
| 20 | moddvds | |- ( ( P e. NN /\ ( N x. ( |_ ` ( K / N ) ) ) e. ZZ /\ 0 e. ZZ ) -> ( ( ( N x. ( |_ ` ( K / N ) ) ) mod P ) = ( 0 mod P ) <-> P || ( ( N x. ( |_ ` ( K / N ) ) ) - 0 ) ) ) |
|
| 21 | 8 15 19 20 | syl3anc | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> ( ( ( N x. ( |_ ` ( K / N ) ) ) mod P ) = ( 0 mod P ) <-> P || ( ( N x. ( |_ ` ( K / N ) ) ) - 0 ) ) ) |
| 22 | 18 21 | mpbird | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> ( ( N x. ( |_ ` ( K / N ) ) ) mod P ) = ( 0 mod P ) ) |
| 23 | 22 | eqeq2d | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> ( ( K mod P ) = ( ( N x. ( |_ ` ( K / N ) ) ) mod P ) <-> ( K mod P ) = ( 0 mod P ) ) ) |
| 24 | moddvds | |- ( ( P e. NN /\ K e. ZZ /\ ( N x. ( |_ ` ( K / N ) ) ) e. ZZ ) -> ( ( K mod P ) = ( ( N x. ( |_ ` ( K / N ) ) ) mod P ) <-> P || ( K - ( N x. ( |_ ` ( K / N ) ) ) ) ) ) |
|
| 25 | 8 1 15 24 | syl3anc | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> ( ( K mod P ) = ( ( N x. ( |_ ` ( K / N ) ) ) mod P ) <-> P || ( K - ( N x. ( |_ ` ( K / N ) ) ) ) ) ) |
| 26 | moddvds | |- ( ( P e. NN /\ K e. ZZ /\ 0 e. ZZ ) -> ( ( K mod P ) = ( 0 mod P ) <-> P || ( K - 0 ) ) ) |
|
| 27 | 8 1 19 26 | syl3anc | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> ( ( K mod P ) = ( 0 mod P ) <-> P || ( K - 0 ) ) ) |
| 28 | 23 25 27 | 3bitr3d | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> ( P || ( K - ( N x. ( |_ ` ( K / N ) ) ) ) <-> P || ( K - 0 ) ) ) |
| 29 | 1 | zcnd | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> K e. CC ) |
| 30 | 29 | subid1d | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> ( K - 0 ) = K ) |
| 31 | 30 | breq2d | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> ( P || ( K - 0 ) <-> P || K ) ) |
| 32 | 7 28 31 | 3bitrd | |- ( ( ( P e. NN /\ N e. NN /\ K e. ZZ ) /\ P || N ) -> ( P || ( K mod N ) <-> P || K ) ) |