This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for theorems about direct product projection. (Contributed by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dpjfval.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| dpjfval.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| dpjlem.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | ||
| Assertion | dpjlem | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ { 𝑋 } ) ) = ( 𝑆 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dpjfval.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 2 | dpjfval.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 3 | dpjlem.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | |
| 4 | 1 2 | dprdf2 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 5 | 4 | ffnd | ⊢ ( 𝜑 → 𝑆 Fn 𝐼 ) |
| 6 | fnressn | ⊢ ( ( 𝑆 Fn 𝐼 ∧ 𝑋 ∈ 𝐼 ) → ( 𝑆 ↾ { 𝑋 } ) = { 〈 𝑋 , ( 𝑆 ‘ 𝑋 ) 〉 } ) | |
| 7 | 5 3 6 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 ↾ { 𝑋 } ) = { 〈 𝑋 , ( 𝑆 ‘ 𝑋 ) 〉 } ) |
| 8 | 7 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ { 𝑋 } ) ) = ( 𝐺 DProd { 〈 𝑋 , ( 𝑆 ‘ 𝑋 ) 〉 } ) ) |
| 9 | 4 3 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 10 | dprdsn | ⊢ ( ( 𝑋 ∈ 𝐼 ∧ ( 𝑆 ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 dom DProd { 〈 𝑋 , ( 𝑆 ‘ 𝑋 ) 〉 } ∧ ( 𝐺 DProd { 〈 𝑋 , ( 𝑆 ‘ 𝑋 ) 〉 } ) = ( 𝑆 ‘ 𝑋 ) ) ) | |
| 11 | 3 9 10 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 dom DProd { 〈 𝑋 , ( 𝑆 ‘ 𝑋 ) 〉 } ∧ ( 𝐺 DProd { 〈 𝑋 , ( 𝑆 ‘ 𝑋 ) 〉 } ) = ( 𝑆 ‘ 𝑋 ) ) ) |
| 12 | 11 | simprd | ⊢ ( 𝜑 → ( 𝐺 DProd { 〈 𝑋 , ( 𝑆 ‘ 𝑋 ) 〉 } ) = ( 𝑆 ‘ 𝑋 ) ) |
| 13 | 8 12 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ { 𝑋 } ) ) = ( 𝑆 ‘ 𝑋 ) ) |