This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmmulpi | |- dom .N = ( N. X. N. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres | |- dom ( .o |` ( N. X. N. ) ) = ( ( N. X. N. ) i^i dom .o ) |
|
| 2 | fnom | |- .o Fn ( On X. On ) |
|
| 3 | 2 | fndmi | |- dom .o = ( On X. On ) |
| 4 | 3 | ineq2i | |- ( ( N. X. N. ) i^i dom .o ) = ( ( N. X. N. ) i^i ( On X. On ) ) |
| 5 | 1 4 | eqtri | |- dom ( .o |` ( N. X. N. ) ) = ( ( N. X. N. ) i^i ( On X. On ) ) |
| 6 | df-mi | |- .N = ( .o |` ( N. X. N. ) ) |
|
| 7 | 6 | dmeqi | |- dom .N = dom ( .o |` ( N. X. N. ) ) |
| 8 | df-ni | |- N. = ( _om \ { (/) } ) |
|
| 9 | difss | |- ( _om \ { (/) } ) C_ _om |
|
| 10 | 8 9 | eqsstri | |- N. C_ _om |
| 11 | omsson | |- _om C_ On |
|
| 12 | 10 11 | sstri | |- N. C_ On |
| 13 | anidm | |- ( ( N. C_ On /\ N. C_ On ) <-> N. C_ On ) |
|
| 14 | 12 13 | mpbir | |- ( N. C_ On /\ N. C_ On ) |
| 15 | xpss12 | |- ( ( N. C_ On /\ N. C_ On ) -> ( N. X. N. ) C_ ( On X. On ) ) |
|
| 16 | 14 15 | ax-mp | |- ( N. X. N. ) C_ ( On X. On ) |
| 17 | dfss | |- ( ( N. X. N. ) C_ ( On X. On ) <-> ( N. X. N. ) = ( ( N. X. N. ) i^i ( On X. On ) ) ) |
|
| 18 | 16 17 | mpbi | |- ( N. X. N. ) = ( ( N. X. N. ) i^i ( On X. On ) ) |
| 19 | 5 7 18 | 3eqtr4i | |- dom .N = ( N. X. N. ) |