This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of dmcosseq as of 31-Dec-2025. (Contributed by NM, 19-Mar-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmcossOLD | |- dom ( A o. B ) C_ dom B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 | |- F/ y E. y x B y |
|
| 2 | exsimpl | |- ( E. z ( x B z /\ z A y ) -> E. z x B z ) |
|
| 3 | vex | |- x e. _V |
|
| 4 | vex | |- y e. _V |
|
| 5 | 3 4 | opelco | |- ( <. x , y >. e. ( A o. B ) <-> E. z ( x B z /\ z A y ) ) |
| 6 | breq2 | |- ( y = z -> ( x B y <-> x B z ) ) |
|
| 7 | 6 | cbvexvw | |- ( E. y x B y <-> E. z x B z ) |
| 8 | 2 5 7 | 3imtr4i | |- ( <. x , y >. e. ( A o. B ) -> E. y x B y ) |
| 9 | 1 8 | exlimi | |- ( E. y <. x , y >. e. ( A o. B ) -> E. y x B y ) |
| 10 | 3 | eldm2 | |- ( x e. dom ( A o. B ) <-> E. y <. x , y >. e. ( A o. B ) ) |
| 11 | 3 | eldm | |- ( x e. dom B <-> E. y x B y ) |
| 12 | 9 10 11 | 3imtr4i | |- ( x e. dom ( A o. B ) -> x e. dom B ) |
| 13 | 12 | ssriv | |- dom ( A o. B ) C_ dom B |