This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set X together with a (distance) function D which is a pseudometric is adistance space (according to E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006), i.e. a (base) set X equipped with adistance D , which is a mapping of two elements of the base set to the (extended) reals and which is nonnegative, symmetric and equal to 0 if the two elements are equal. (Contributed by AV, 15-Oct-2021) (Revised by AV, 5-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | distspace | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( ( D : ( X X. X ) --> RR* /\ ( A D A ) = 0 ) /\ ( 0 <_ ( A D B ) /\ ( A D B ) = ( B D A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psmetf | |- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> D : ( X X. X ) --> RR* ) |
| 3 | psmet0 | |- ( ( D e. ( PsMet ` X ) /\ A e. X ) -> ( A D A ) = 0 ) |
|
| 4 | 3 | 3adant3 | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( A D A ) = 0 ) |
| 5 | 2 4 | jca | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( D : ( X X. X ) --> RR* /\ ( A D A ) = 0 ) ) |
| 6 | psmetge0 | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> 0 <_ ( A D B ) ) |
|
| 7 | psmetsym | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) = ( B D A ) ) |
|
| 8 | 5 6 7 | jca32 | |- ( ( D e. ( PsMet ` X ) /\ A e. X /\ B e. X ) -> ( ( D : ( X X. X ) --> RR* /\ ( A D A ) = 0 ) /\ ( 0 <_ ( A D B ) /\ ( A D B ) = ( B D A ) ) ) ) |