This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjne | |- ( ( ( A i^i B ) = (/) /\ C e. A /\ D e. B ) -> C =/= D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj | |- ( ( A i^i B ) = (/) <-> A. x e. A -. x e. B ) |
|
| 2 | eleq1 | |- ( x = C -> ( x e. B <-> C e. B ) ) |
|
| 3 | 2 | notbid | |- ( x = C -> ( -. x e. B <-> -. C e. B ) ) |
| 4 | 3 | rspccva | |- ( ( A. x e. A -. x e. B /\ C e. A ) -> -. C e. B ) |
| 5 | eleq1a | |- ( D e. B -> ( C = D -> C e. B ) ) |
|
| 6 | 5 | necon3bd | |- ( D e. B -> ( -. C e. B -> C =/= D ) ) |
| 7 | 4 6 | syl5com | |- ( ( A. x e. A -. x e. B /\ C e. A ) -> ( D e. B -> C =/= D ) ) |
| 8 | 1 7 | sylanb | |- ( ( ( A i^i B ) = (/) /\ C e. A ) -> ( D e. B -> C =/= D ) ) |
| 9 | 8 | 3impia | |- ( ( ( A i^i B ) = (/) /\ C e. A /\ D e. B ) -> C =/= D ) |