This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate definition of proper substitution that, like dfsb1 , mixes free and bound variables to avoid distinct variable requirements. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 17-Feb-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsb2 | |- ( [ y / x ] ph <-> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp | |- ( A. x x = y -> x = y ) |
|
| 2 | sbequ2 | |- ( x = y -> ( [ y / x ] ph -> ph ) ) |
|
| 3 | 2 | sps | |- ( A. x x = y -> ( [ y / x ] ph -> ph ) ) |
| 4 | orc | |- ( ( x = y /\ ph ) -> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) |
|
| 5 | 1 3 4 | syl6an | |- ( A. x x = y -> ( [ y / x ] ph -> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) ) |
| 6 | sb4b | |- ( -. A. x x = y -> ( [ y / x ] ph <-> A. x ( x = y -> ph ) ) ) |
|
| 7 | olc | |- ( A. x ( x = y -> ph ) -> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) |
|
| 8 | 6 7 | biimtrdi | |- ( -. A. x x = y -> ( [ y / x ] ph -> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) ) |
| 9 | 5 8 | pm2.61i | |- ( [ y / x ] ph -> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) |
| 10 | sbequ1 | |- ( x = y -> ( ph -> [ y / x ] ph ) ) |
|
| 11 | 10 | imp | |- ( ( x = y /\ ph ) -> [ y / x ] ph ) |
| 12 | sb2 | |- ( A. x ( x = y -> ph ) -> [ y / x ] ph ) |
|
| 13 | 11 12 | jaoi | |- ( ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) -> [ y / x ] ph ) |
| 14 | 9 13 | impbii | |- ( [ y / x ] ph <-> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) |