This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dff3 | |- ( F : A --> B <-> ( F C_ ( A X. B ) /\ A. x e. A E! y x F y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssxp | |- ( F : A --> B -> F C_ ( A X. B ) ) |
|
| 2 | ffun | |- ( F : A --> B -> Fun F ) |
|
| 3 | fdm | |- ( F : A --> B -> dom F = A ) |
|
| 4 | 3 | eleq2d | |- ( F : A --> B -> ( x e. dom F <-> x e. A ) ) |
| 5 | 4 | biimpar | |- ( ( F : A --> B /\ x e. A ) -> x e. dom F ) |
| 6 | funfvop | |- ( ( Fun F /\ x e. dom F ) -> <. x , ( F ` x ) >. e. F ) |
|
| 7 | 2 5 6 | syl2an2r | |- ( ( F : A --> B /\ x e. A ) -> <. x , ( F ` x ) >. e. F ) |
| 8 | df-br | |- ( x F ( F ` x ) <-> <. x , ( F ` x ) >. e. F ) |
|
| 9 | 7 8 | sylibr | |- ( ( F : A --> B /\ x e. A ) -> x F ( F ` x ) ) |
| 10 | fvex | |- ( F ` x ) e. _V |
|
| 11 | breq2 | |- ( y = ( F ` x ) -> ( x F y <-> x F ( F ` x ) ) ) |
|
| 12 | 10 11 | spcev | |- ( x F ( F ` x ) -> E. y x F y ) |
| 13 | 9 12 | syl | |- ( ( F : A --> B /\ x e. A ) -> E. y x F y ) |
| 14 | funmo | |- ( Fun F -> E* y x F y ) |
|
| 15 | 2 14 | syl | |- ( F : A --> B -> E* y x F y ) |
| 16 | 15 | adantr | |- ( ( F : A --> B /\ x e. A ) -> E* y x F y ) |
| 17 | df-eu | |- ( E! y x F y <-> ( E. y x F y /\ E* y x F y ) ) |
|
| 18 | 13 16 17 | sylanbrc | |- ( ( F : A --> B /\ x e. A ) -> E! y x F y ) |
| 19 | 18 | ralrimiva | |- ( F : A --> B -> A. x e. A E! y x F y ) |
| 20 | 1 19 | jca | |- ( F : A --> B -> ( F C_ ( A X. B ) /\ A. x e. A E! y x F y ) ) |
| 21 | xpss | |- ( A X. B ) C_ ( _V X. _V ) |
|
| 22 | sstr | |- ( ( F C_ ( A X. B ) /\ ( A X. B ) C_ ( _V X. _V ) ) -> F C_ ( _V X. _V ) ) |
|
| 23 | 21 22 | mpan2 | |- ( F C_ ( A X. B ) -> F C_ ( _V X. _V ) ) |
| 24 | df-rel | |- ( Rel F <-> F C_ ( _V X. _V ) ) |
|
| 25 | 23 24 | sylibr | |- ( F C_ ( A X. B ) -> Rel F ) |
| 26 | 25 | adantr | |- ( ( F C_ ( A X. B ) /\ A. x e. A E! y x F y ) -> Rel F ) |
| 27 | df-ral | |- ( A. x e. A E! y x F y <-> A. x ( x e. A -> E! y x F y ) ) |
|
| 28 | eumo | |- ( E! y x F y -> E* y x F y ) |
|
| 29 | 28 | imim2i | |- ( ( x e. A -> E! y x F y ) -> ( x e. A -> E* y x F y ) ) |
| 30 | 29 | adantl | |- ( ( F C_ ( A X. B ) /\ ( x e. A -> E! y x F y ) ) -> ( x e. A -> E* y x F y ) ) |
| 31 | df-br | |- ( x F y <-> <. x , y >. e. F ) |
|
| 32 | ssel | |- ( F C_ ( A X. B ) -> ( <. x , y >. e. F -> <. x , y >. e. ( A X. B ) ) ) |
|
| 33 | 31 32 | biimtrid | |- ( F C_ ( A X. B ) -> ( x F y -> <. x , y >. e. ( A X. B ) ) ) |
| 34 | opelxp1 | |- ( <. x , y >. e. ( A X. B ) -> x e. A ) |
|
| 35 | 33 34 | syl6 | |- ( F C_ ( A X. B ) -> ( x F y -> x e. A ) ) |
| 36 | 35 | exlimdv | |- ( F C_ ( A X. B ) -> ( E. y x F y -> x e. A ) ) |
| 37 | 36 | con3d | |- ( F C_ ( A X. B ) -> ( -. x e. A -> -. E. y x F y ) ) |
| 38 | nexmo | |- ( -. E. y x F y -> E* y x F y ) |
|
| 39 | 37 38 | syl6 | |- ( F C_ ( A X. B ) -> ( -. x e. A -> E* y x F y ) ) |
| 40 | 39 | adantr | |- ( ( F C_ ( A X. B ) /\ ( x e. A -> E! y x F y ) ) -> ( -. x e. A -> E* y x F y ) ) |
| 41 | 30 40 | pm2.61d | |- ( ( F C_ ( A X. B ) /\ ( x e. A -> E! y x F y ) ) -> E* y x F y ) |
| 42 | 41 | ex | |- ( F C_ ( A X. B ) -> ( ( x e. A -> E! y x F y ) -> E* y x F y ) ) |
| 43 | 42 | alimdv | |- ( F C_ ( A X. B ) -> ( A. x ( x e. A -> E! y x F y ) -> A. x E* y x F y ) ) |
| 44 | 27 43 | biimtrid | |- ( F C_ ( A X. B ) -> ( A. x e. A E! y x F y -> A. x E* y x F y ) ) |
| 45 | 44 | imp | |- ( ( F C_ ( A X. B ) /\ A. x e. A E! y x F y ) -> A. x E* y x F y ) |
| 46 | dffun6 | |- ( Fun F <-> ( Rel F /\ A. x E* y x F y ) ) |
|
| 47 | 26 45 46 | sylanbrc | |- ( ( F C_ ( A X. B ) /\ A. x e. A E! y x F y ) -> Fun F ) |
| 48 | dmss | |- ( F C_ ( A X. B ) -> dom F C_ dom ( A X. B ) ) |
|
| 49 | dmxpss | |- dom ( A X. B ) C_ A |
|
| 50 | 48 49 | sstrdi | |- ( F C_ ( A X. B ) -> dom F C_ A ) |
| 51 | breq1 | |- ( x = z -> ( x F y <-> z F y ) ) |
|
| 52 | 51 | eubidv | |- ( x = z -> ( E! y x F y <-> E! y z F y ) ) |
| 53 | 52 | rspccv | |- ( A. x e. A E! y x F y -> ( z e. A -> E! y z F y ) ) |
| 54 | euex | |- ( E! y z F y -> E. y z F y ) |
|
| 55 | vex | |- z e. _V |
|
| 56 | 55 | eldm | |- ( z e. dom F <-> E. y z F y ) |
| 57 | 54 56 | sylibr | |- ( E! y z F y -> z e. dom F ) |
| 58 | 53 57 | syl6 | |- ( A. x e. A E! y x F y -> ( z e. A -> z e. dom F ) ) |
| 59 | 58 | ssrdv | |- ( A. x e. A E! y x F y -> A C_ dom F ) |
| 60 | 50 59 | anim12i | |- ( ( F C_ ( A X. B ) /\ A. x e. A E! y x F y ) -> ( dom F C_ A /\ A C_ dom F ) ) |
| 61 | eqss | |- ( dom F = A <-> ( dom F C_ A /\ A C_ dom F ) ) |
|
| 62 | 60 61 | sylibr | |- ( ( F C_ ( A X. B ) /\ A. x e. A E! y x F y ) -> dom F = A ) |
| 63 | df-fn | |- ( F Fn A <-> ( Fun F /\ dom F = A ) ) |
|
| 64 | 47 62 63 | sylanbrc | |- ( ( F C_ ( A X. B ) /\ A. x e. A E! y x F y ) -> F Fn A ) |
| 65 | rnss | |- ( F C_ ( A X. B ) -> ran F C_ ran ( A X. B ) ) |
|
| 66 | rnxpss | |- ran ( A X. B ) C_ B |
|
| 67 | 65 66 | sstrdi | |- ( F C_ ( A X. B ) -> ran F C_ B ) |
| 68 | 67 | adantr | |- ( ( F C_ ( A X. B ) /\ A. x e. A E! y x F y ) -> ran F C_ B ) |
| 69 | df-f | |- ( F : A --> B <-> ( F Fn A /\ ran F C_ B ) ) |
|
| 70 | 64 68 69 | sylanbrc | |- ( ( F C_ ( A X. B ) /\ A. x e. A E! y x F y ) -> F : A --> B ) |
| 71 | 20 70 | impbii | |- ( F : A --> B <-> ( F C_ ( A X. B ) /\ A. x e. A E! y x F y ) ) |