This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfdmf.1 | |- F/_ x A |
|
| dfdmf.2 | |- F/_ y A |
||
| Assertion | dfdmf | |- dom A = { x | E. y x A y } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdmf.1 | |- F/_ x A |
|
| 2 | dfdmf.2 | |- F/_ y A |
|
| 3 | df-dm | |- dom A = { w | E. v w A v } |
|
| 4 | nfcv | |- F/_ y w |
|
| 5 | nfcv | |- F/_ y v |
|
| 6 | 4 2 5 | nfbr | |- F/ y w A v |
| 7 | nfv | |- F/ v w A y |
|
| 8 | breq2 | |- ( v = y -> ( w A v <-> w A y ) ) |
|
| 9 | 6 7 8 | cbvexv1 | |- ( E. v w A v <-> E. y w A y ) |
| 10 | 9 | abbii | |- { w | E. v w A v } = { w | E. y w A y } |
| 11 | nfcv | |- F/_ x w |
|
| 12 | nfcv | |- F/_ x y |
|
| 13 | 11 1 12 | nfbr | |- F/ x w A y |
| 14 | 13 | nfex | |- F/ x E. y w A y |
| 15 | nfv | |- F/ w E. y x A y |
|
| 16 | breq1 | |- ( w = x -> ( w A y <-> x A y ) ) |
|
| 17 | 16 | exbidv | |- ( w = x -> ( E. y w A y <-> E. y x A y ) ) |
| 18 | 14 15 17 | cbvabw | |- { w | E. y w A y } = { x | E. y x A y } |
| 19 | 3 10 18 | 3eqtri | |- dom A = { x | E. y x A y } |